دانلود فایل با شمار فاکتور
لطفا شماره فاکتور خود را درج نمایید
جدیدترین لغات واژهنامه
کشورهای شمال اروپا
آتش سوزی های جنگلی
دوسویه
نادیده گرفتن، دست انداخ
اجتناب ناپذیر، بی شفقت،
آمار بازدیدکنندگان
بازدید امروز :37
بازدید روز گذشته :79
بازدید این هفته :181
بازدید این ماه :1481
مجموع آمار بازدید ها :802775
بازدید روز گذشته :79
بازدید این هفته :181
بازدید این ماه :1481
مجموع آمار بازدید ها :802775
عنوان محصول: ترکیب داده کاوی، یادگیری ماشین و آمارهای سنتی برای تشخیص نشانه های زیستی مربوط به افسردگی
توضیحات مختصر:
پیشینه
تکنیک های داده کاوی مقیاس بزرگ نظری با استفاده از الگوریتم های یادگیری ماشین وعده ی آنالیز مجموعه داده های بزرگ اپیدمیولوژیکی را می دهند. این مطالعه، کاربرد متدولوژی ترکیبی را برای انتخاب متعیر را نشان می دهد که گم شدن داده ها و طراحی پیچیده برای شناسایی نشانه های زیستی کلیدی مربوط به افسرد...
|
ترکیب داده کاوی، یادگیری ماشین و آمارهای سنتی برای تشخیص نشانه های زیستی مربوط به افسردگی |
قیمت : 45000 تومان
تخفیف: 3000 تومان
تخفیف ویژه : 10 درصد
قیمت نهایی: 37500 تومان
723 بازدید
کد مقاله: TTC-
3280
نوع فایل : docx
لینک دانلود فایل خریداری شده بلافاصله بعد از خرید موفق فعال خواهد شد.
Abstract
Background
Atheoretical large-scale data mining techniques using machine learning algorithms have
promise in the analysis of large epidemiological datasets. This study illustrates the use of a
hybrid methodology for variable selection that took account of missing data and complex
survey design to identify key biomarkers associated with depression from a large epidemiological
study.
Methods
The study used a three-step methodology amalgamating multiple imputation, a machine
learning boosted regression algorithm and logistic regression, to identify key biomarkers
associated with depression in the National Health and Nutrition Examination Study (2009–
2010). Depression was measured using the Patient Health Questionnaire-9 and 67 biomarkers
were analysed. Covariates in this study included gender, age, race, smoking, food
security, Poverty Income Ratio, Body Mass Index, physical activity, alcohol use, medical
conditions and medications. The final imputed weighted multiple logistic regression model
included possible confounders and moderators.
Results
After the creation of 20 imputation data sets from multiple chained regression sequences,
machine learning boosted regression initially identified 21 biomarkers associated with
depression. Using traditional logistic regression methods, including controlling for possible confounders and moderators, a final set of three biomarkers were selected. The final three
biomarkers from the novel hybrid variable selection methodology were red cell distribution
width (OR 1.15; 95% CI 1.01, 1.30), serum glucose (OR 1.01; 95% CI 1.00, 1.01) and total
bilirubin (OR 0.12; 95% CI 0.05, 0.28). Significant interactions were found between total bilirubin
with Mexican American/Hispanic group (p = 0.016), and current smokers (p0.001).
Conclusion
The systematic use of a hybrid methodology for variable selection, fusing data mining techniques
using a machine learning algorithm with traditional statistical modelling, accounted
for missing data and complex survey sampling methodology and was demonstrated to be a
useful tool for detecting three biomarkers associated with depression for future hypothesis
generation: red cell distribution width, serum glucose and total bilirubin.
چکیده
پیشینه
تکنیک های داده کاوی مقیاس بزرگ نظری با استفاده از الگوریتم های یادگیری ماشین وعده ی آنالیز مجموعه داده های بزرگ اپیدمیولوژیکی را می دهند. این مطالعه، کاربرد متدولوژی ترکیبی را برای انتخاب متعیر را نشان می دهد که گم شدن داده ها و طراحی پیچیده برای شناسایی نشانه های زیستی کلیدی مربوط به افسردگی را از مطالعه ی بزرگ اپیدمیولوژیکی در نظر می گیرد.
متدها
این مطالعه از متدولوژی سه مرحله ای ادغام چند اسناد، الگوریتم رگرسیون تقویت شده با یادگیری ماشین و رگرسیون منطقی برای شناسایی نشانه های زیستی کلیدی مربوط به افسردگی در مطالعات آزمون تغذیه و سلامت ملی (2010-2009) استفاده می کند. افسردگی با استفاده از پرسشنامه ی 9 سلامت بیمار ارزیابی می شود و 67 نشانه ی زیستی تجزیه و تحلیل می شوند. متغیرهای کمکی در این مطالعه شامل جنسیت، سن، نژاد، استعمال دخانیات، امنیت غذایی، نسبت درآمد فقر، شاخص توده بدن، فعالیت فیزیکی، مصرف الکل، شرایط طبی و داروها می باشند. مدل رگرسیون منطقی چندگانه ی وزن دار ضمنی نهایی شامل عوامل مخدوش کننده و تعدیل کننده ها است.
نتایج
بعد از ایجاد 20 مجموعه داده ی اسنادی از چندین دنباله رگرسیون زنجیروار، رگرسیون تقویت شده با یادگیری ماشین در ابتدا به شناسایی 21 نشانه ی زیستی مرتبط با افسردگی پرداخت. با استفاده از متدهای رگرسیون منطقی سابق، که شامل کنترل عوامل مخدوش کننده و تعدیل کننده های احتمالی است، مجموعه ی نهایی سه نشانه زیستی انتخاب شدند. سه نشانه ی زیستی نهایی از متدولوژی انتخاب متغیر ترکیبی جدید شامل عرض توزیع سلول قرمز (OR 1.15; 95% CI 1.01, 1.30)، گلوکز سرم (OR 1.01; 95% CI 1.00, 1.01) و کل بیلی روبین (OR 0.12; 95% CI 0.05, 0.28) بودند. برهم کنش های قابل توجهی بین کل بیلی روبین با گروه مکزیکی امریکایی/اسپانیایی (p = 0.016)، و استعمال کننده های دخانیات (p = 0.016) بدست آمدند.
نتیجه گیری
کاربرد سیستماتیک متدولوژی ترکیبی برای انتخاب متغیر، با ادغام تکنیک های داده کاوی با استفاده از الگوریتم یادگیری ماشین با مدل سازی آماری سنتی، برای متدولوژی نمونه برداری بررسی پیچیده و داده های از قلم افتاده در نظر گرفته شده است و بعنوان ابزار مفیدی برای تشخیص سه نشانه ی زیستی مربوط به افسردگی برای تولید فرضیه ی آتی نشان داده شده است: عرض توزیع سلول قرمز، گلوکز سرم و مجموع بیلی روبین.
تعداد صفحات انگلیسی:23
صفحه
تعداد صفحات فـارسـی:36
صفحه
- آدرس: تبریز، آبرسان، مهرگان چهارم
- تلفن تماس: 09016347107
- تلفن ثابت : 35250068-041
- Mailttcenterاین آدرس ایمیل توسط spambots حفاظت می شود. برای دیدن شما نیاز به جاوا اسکریپت دارید : آدرس ایمیل
- @zoodyab :آدرس تلگرام
مرکز تخصصی تلاش ترجمه از سال 1385 شروع به کار نموده است و تا کنون بیش از ده هزار ترجمه در رشته ها و زمینه های مختلف توسط متخصصین این مرکز انجام شده است.
تمامی ترجمههای انجام شده توسط موسسه تخصصی تلاش ترجمه، به صورت دستی (غیرماشینی) بوده و توسط مترجمین با سابقه انجام میشوند. ترجمههای انجام شده توسط موسسه تلاش ترجمه در قالب فایل Word و به صورت کاملا روان و بازخوانی شده و با ضمانت بازگشت وجه 72 ساعته (در صورت عدم رضایت از ترجمه) خدمت مشتریان محترم ارائه میشود.