دانلود فایل با شمار فاکتور
لطفا شماره فاکتور خود را درج نمایید
جدیدترین لغات واژهنامه
کشورهای شمال اروپا
آتش سوزی های جنگلی
دوسویه
نادیده گرفتن، دست انداخ
اجتناب ناپذیر، بی شفقت،
آمار بازدیدکنندگان
بازدید امروز :24
بازدید روز گذشته :74
بازدید این هفته :221
بازدید این ماه :895
مجموع آمار بازدید ها :798853
بازدید روز گذشته :74
بازدید این هفته :221
بازدید این ماه :895
مجموع آمار بازدید ها :798853
عنوان محصول: نمونه سازی شبکه عصبی GPGPU برای آنالیز کلان داده با یادگیری عمیق
توضیحات مختصر:
کلان داده (یا داده های بزرگ) با داده های در حال رشد پیچیده با حجم بزرگ در ارتباط است. در راستای توسعه ی سریع ذخیره سازی و شبکه داده ها، سازمان ها، مجموعه داده های در حال رشد بزرگ را جمع آوری می کنند که می توانند اطلاعات مفیدی به همراه داشته باشند. به منظور استخراج اطلاعات از این مجموعه داده ها در زم...
|
نمونه سازی شبکه عصبی GPGPU برای آنالیز کلان داده با یادگیری عمیق |
قیمت : 34500 تومان
تخفیف ویژه : 10 درصد
قیمت نهایی: 31050 تومان
578 بازدید
کد مقاله: TTC-
3542
نوع فایل : docx
لینک دانلود فایل خریداری شده بلافاصله بعد از خرید موفق فعال خواهد شد.
Abstract
Big Data concerns with large-volume complex growing data. Given the fast development of data storage
and network, organizations are collecting large ever-growing datasets that can have useful information.
In order to extract information from these datasets within useful time, it is important to use distributed
and parallel algorithms.
One common usage of big data is machine learning, in which collected data is used to predict future
behavior. Deep-Learning using Artificial Neural Networks is one of the popular methods for extracting
information from complex datasets. Deep-learning is capable of more creating complex models than
traditional probabilistic machine learning techniques.
This work presents a step-by-step guide on how to prototype a Deep-Learning application that executes
both on GPU and CPU clusters. Python and Redis are the core supporting tools of this guide. This tutorial
will allow the reader to understand the basics of building a distributed high performance GPU application
in a few hours. Since we do not depend on any deep-learning application or framework—we use low-level
building blocks—this tutorial can be adjusted for any other parallel algorithm the reader might want to
prototype on Big Data. Finally, we will discuss how to move from a prototype to a fully blown production
application.
چکیده
کلان داده (یا داده های بزرگ) با داده های در حال رشد پیچیده با حجم بزرگ در ارتباط است. در راستای توسعه ی سریع ذخیره سازی و شبکه داده ها، سازمان ها، مجموعه داده های در حال رشد بزرگ را جمع آوری می کنند که می توانند اطلاعات مفیدی به همراه داشته باشند. به منظور استخراج اطلاعات از این مجموعه داده ها در زمان مفید، استفاده از الگوریتم های توزیع شده و موازی، حائز اهمیت است. یک کاربرد رایج کلان داده، یادگیری ماشین است که در آن داده های جمع آوری شده برای پیش بینی رفتار آینده استفاده می شوند. یادگیری عمیق با استفاده از شبکه های عصبی مصنوعی، یکی از روش های رایج برای استخراج اطلاعات از مجموعه داده های پیچیده است. یادگیری عمیق، قادر به ایجاد مدل های پیچیده تر از تکنیک های یادگیری ماشین احتمالی سابق است. این تحقیق، یک راهنمای مرحله به مرحله در مورد نحوه ی نمونه سازی کاربرد یادگیری عمیق ارائه می کند که بر روی هر دو کلاستر GPU و CPU اجرا می شود. پایتون و Redis، ابزارهای پشتیبان هسته ای این راهنما هستند. این آزمایش، این امکان را به خواننده خواهد داد تا مبانی ساخت کاربرد GPU توزیع شده با کارایی بالا را در چند ساعت درک کند. از آنجاییکه به هیچ برنامه کاربردی یا چارچوب یادگیری عمیق وابسته نیستیم - از بلوک های ساخت سطح پایین استفاده می کنیم – این آموزش می تواند برای هر الگوریتم موازی دیگری که ممکن است خواننده بخواهد تا روی کلان داده نمونه سازی کند، تنظیم شود. در نهایت، در مورد نحوه ی انتقال از یک نمونه اولیه به برنامه کاربردی تولیدی نوظهور بحث خواهیم کرد.
تعداد صفحات انگلیسی:23
صفحه
تعداد صفحات فـارسـی:7
صفحه
- آدرس: تبریز، آبرسان، مهرگان چهارم
- تلفن تماس: 09016347107
- تلفن ثابت : 35250068-041
- Mailttcenterاین آدرس ایمیل توسط spambots حفاظت می شود. برای دیدن شما نیاز به جاوا اسکریپت دارید : آدرس ایمیل
- @zoodyab :آدرس تلگرام
مرکز تخصصی تلاش ترجمه از سال 1385 شروع به کار نموده است و تا کنون بیش از ده هزار ترجمه در رشته ها و زمینه های مختلف توسط متخصصین این مرکز انجام شده است.
تمامی ترجمههای انجام شده توسط موسسه تخصصی تلاش ترجمه، به صورت دستی (غیرماشینی) بوده و توسط مترجمین با سابقه انجام میشوند. ترجمههای انجام شده توسط موسسه تلاش ترجمه در قالب فایل Word و به صورت کاملا روان و بازخوانی شده و با ضمانت بازگشت وجه 72 ساعته (در صورت عدم رضایت از ترجمه) خدمت مشتریان محترم ارائه میشود.