
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/304457091

SARLock: SAT attack resistant logic locking

Conference Paper · May 2016

DOI: 10.1109/HST.2016.7495588

CITATIONS

92
READS

691

4 authors, including:

Some of the authors of this publication are also working on these related projects:

SAT Attack Resilient Logic Locking View project

Muhammad Yasin

New York University

24 PUBLICATIONS 436 CITATIONS

SEE PROFILE

Bodhisatwa Mazumdar

New York University Abu Dhabi

32 PUBLICATIONS 328 CITATIONS

SEE PROFILE

Jeyavijayan Rajendran

New York University

68 PUBLICATIONS 2,479 CITATIONS

SEE PROFILE

All content following this page was uploaded by Muhammad Yasin on 10 November 2017.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/304457091_SARLock_SAT_attack_resistant_logic_locking?enrichId=rgreq-1f845bdc79c03cdb8aa2be87534103e2-XXX&enrichSource=Y292ZXJQYWdlOzMwNDQ1NzA5MTtBUzo1NTkyNDYxODc3OTg1MjlAMTUxMDM0NjA4OTY4Nw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/304457091_SARLock_SAT_attack_resistant_logic_locking?enrichId=rgreq-1f845bdc79c03cdb8aa2be87534103e2-XXX&enrichSource=Y292ZXJQYWdlOzMwNDQ1NzA5MTtBUzo1NTkyNDYxODc3OTg1MjlAMTUxMDM0NjA4OTY4Nw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/SAT-Attack-Resilient-Logic-Locking?enrichId=rgreq-1f845bdc79c03cdb8aa2be87534103e2-XXX&enrichSource=Y292ZXJQYWdlOzMwNDQ1NzA5MTtBUzo1NTkyNDYxODc3OTg1MjlAMTUxMDM0NjA4OTY4Nw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-1f845bdc79c03cdb8aa2be87534103e2-XXX&enrichSource=Y292ZXJQYWdlOzMwNDQ1NzA5MTtBUzo1NTkyNDYxODc3OTg1MjlAMTUxMDM0NjA4OTY4Nw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Muhammad_Yasin18?enrichId=rgreq-1f845bdc79c03cdb8aa2be87534103e2-XXX&enrichSource=Y292ZXJQYWdlOzMwNDQ1NzA5MTtBUzo1NTkyNDYxODc3OTg1MjlAMTUxMDM0NjA4OTY4Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Muhammad_Yasin18?enrichId=rgreq-1f845bdc79c03cdb8aa2be87534103e2-XXX&enrichSource=Y292ZXJQYWdlOzMwNDQ1NzA5MTtBUzo1NTkyNDYxODc3OTg1MjlAMTUxMDM0NjA4OTY4Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/New_York_University2?enrichId=rgreq-1f845bdc79c03cdb8aa2be87534103e2-XXX&enrichSource=Y292ZXJQYWdlOzMwNDQ1NzA5MTtBUzo1NTkyNDYxODc3OTg1MjlAMTUxMDM0NjA4OTY4Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Muhammad_Yasin18?enrichId=rgreq-1f845bdc79c03cdb8aa2be87534103e2-XXX&enrichSource=Y292ZXJQYWdlOzMwNDQ1NzA5MTtBUzo1NTkyNDYxODc3OTg1MjlAMTUxMDM0NjA4OTY4Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bodhisatwa_Mazumdar?enrichId=rgreq-1f845bdc79c03cdb8aa2be87534103e2-XXX&enrichSource=Y292ZXJQYWdlOzMwNDQ1NzA5MTtBUzo1NTkyNDYxODc3OTg1MjlAMTUxMDM0NjA4OTY4Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bodhisatwa_Mazumdar?enrichId=rgreq-1f845bdc79c03cdb8aa2be87534103e2-XXX&enrichSource=Y292ZXJQYWdlOzMwNDQ1NzA5MTtBUzo1NTkyNDYxODc3OTg1MjlAMTUxMDM0NjA4OTY4Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/New_York_University_Abu_Dhabi?enrichId=rgreq-1f845bdc79c03cdb8aa2be87534103e2-XXX&enrichSource=Y292ZXJQYWdlOzMwNDQ1NzA5MTtBUzo1NTkyNDYxODc3OTg1MjlAMTUxMDM0NjA4OTY4Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bodhisatwa_Mazumdar?enrichId=rgreq-1f845bdc79c03cdb8aa2be87534103e2-XXX&enrichSource=Y292ZXJQYWdlOzMwNDQ1NzA5MTtBUzo1NTkyNDYxODc3OTg1MjlAMTUxMDM0NjA4OTY4Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jeyavijayan_Rajendran?enrichId=rgreq-1f845bdc79c03cdb8aa2be87534103e2-XXX&enrichSource=Y292ZXJQYWdlOzMwNDQ1NzA5MTtBUzo1NTkyNDYxODc3OTg1MjlAMTUxMDM0NjA4OTY4Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jeyavijayan_Rajendran?enrichId=rgreq-1f845bdc79c03cdb8aa2be87534103e2-XXX&enrichSource=Y292ZXJQYWdlOzMwNDQ1NzA5MTtBUzo1NTkyNDYxODc3OTg1MjlAMTUxMDM0NjA4OTY4Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/New_York_University2?enrichId=rgreq-1f845bdc79c03cdb8aa2be87534103e2-XXX&enrichSource=Y292ZXJQYWdlOzMwNDQ1NzA5MTtBUzo1NTkyNDYxODc3OTg1MjlAMTUxMDM0NjA4OTY4Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jeyavijayan_Rajendran?enrichId=rgreq-1f845bdc79c03cdb8aa2be87534103e2-XXX&enrichSource=Y292ZXJQYWdlOzMwNDQ1NzA5MTtBUzo1NTkyNDYxODc3OTg1MjlAMTUxMDM0NjA4OTY4Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Muhammad_Yasin18?enrichId=rgreq-1f845bdc79c03cdb8aa2be87534103e2-XXX&enrichSource=Y292ZXJQYWdlOzMwNDQ1NzA5MTtBUzo1NTkyNDYxODc3OTg1MjlAMTUxMDM0NjA4OTY4Nw%3D%3D&el=1_x_10&_esc=publicationCoverPdf

SARLock: SAT Attack Resistant Logic Locking
Muhammad Yasin†, Bodhisatwa Mazumdar‡, Jeyavijayan (JV)ξ Rajendran and Ozgur Sinanoglu‡

yasin@nyu.edu, bm105@nyu.edu, jv.ee@utdallas.edu, ozgursin@nyu.edu
† Electrical and Computer Engineering, NYU Tandon School of Engineering, NY, USA

ξ Erik Jonsson School of Engineering & Computer Science, The University of Texas at Dallas, TX, USA
‡ Electrical and Computer Engineering, New York University Abu Dhabi, Abu Dhabi, U.A.E.

Abstract—Logic locking is an Intellectual Property (IP) pro-
tection technique that thwarts IP piracy, hardware Trojans,
reverse engineering, and IC overproduction. Researchers have
taken multiple attempts in breaking logic locking techniques and
recovering its secret key. A Boolean Satisfiability (SAT) based
attack has been recently presented that breaks all the existing
combinational logic locking techniques. In this paper, we develop
a lightweight countermeasure against this and other attacks that
aim at gradually pruning the key search space. Our proposed
logic locking technique, referred to as SARLock, maximizes the
required number of distinguishing input patterns to recover the
secret key. SARLock thwarts the SAT attack by rendering the
attack effort exponential in the number of bits in the secret key,
while its overhead grows only linearly.

I. INTRODUCTION
The evolving complexity of Integrated Circuits (ICs) and the

skyrocketing costs of building or maintaining a semiconductor
foundry have propelled the globalization of IC design and
manufacturing flow [1]. Design houses may purchase Intellec-
tual property (IP) cores from third-party IP vendors to reduce
their design effort and meet strict time-to-market constraints.
Many companies, such as Apple, operate fabless and outsource
the fabrication to offshore foundries. In a globalized IC supply
chain, untrusted agents may obtain access to the valuable IP
or the physical IC, which gives rise to security threats. These
malicious agents can pirate the IP, overbuild ICs for illegal
sale, tamper the ICs to insert malicious circuitry in the form
of Hardware Trojans (HTs), or reverse engineer the netlist
from an IC for unlicensed use [2].

Countermeasures such as IC camouflaging [3], split man-
ufacturing [4], and IC metering [5] have been developed to
thwart these attacks. Logic locking1 is a set of techniques
that thwart IP piracy, overbuilding, and reverse engineering
attacks by locking a design with a secret key [6], [10]–
[12]. To enable chip-locking features, additional logic, e.g.,
XOR/XNORs gates referred to as key gates, is added to the
original netlist to obtain a locked netlist.

Figure 1(a) shows an example netlist, and Figure 1(b) shows
its locked version through three XOR/XNOR key gates. One
of the inputs of each key gate is driven by a wire in the original
design, while the other input, referred to as key input, is driven
by a key bit stored in a tamper-proof memory. The inverters
in the netlist can be moved around to increase the obfuscation
complexity as shown in Figure 1(c): An attacker will not know
whether the inverter is a part of original design or added for
logic locking. This locked netlist passes through the untrusted
design/fabrication stages. A locked IC (or a locked netlist)

1Researchers have previously used the terms “logic obfuscation” [6]–[9]
and “logic encryption” [10] for this purpose. However, echoing the call for
consistent terminology in [11], we use the term “logic locking.”

will not generate correct output unless it is activated using the
correct key. Even if an attacker gets access to the locked netlist
with the key gates, either by stealing in design house or by
reverse engineering the masks in the foundry, the netlist could
implement one of exponentially many functions determined
by the key value unknown to the attacker.

Several researchers have exploited the weaknesses of dif-
ferent combinational logic locking techniques and developed
attacks that recover the secret key [8], [11], [13], [14]. An
introduction of the logic locking techniques and a summary
of the recent attacks are presented in Section VI. While
specific attacks focus on specific weak points of a logic locking
technique, a more general attack was presented at HOST 2015
that breaks all existing combinational logic locking techniques,
recovering the secret key within a few hours for most of the
locked circuits [14].

The attack uses Boolean satisfiability (SAT) based algo-
rithms and we refer to it as SAT attack [14]. In the threat
model of the attack, the attacker is a malicious agent in the
foundry with access to the following:

1) a locked netlist with the key gates.
2) a functional IC with the correct key embedded inside. The

attacker can apply inputs to the IC and observe the outputs.

The objective of the attacker is to extract the secret key.
The SAT attack uses modern SAT solvers to compute special
distinguishing input patterns (DIP) [14]. These patterns, along
with the correct output collected from the functional IC,
are used to reduce the key search space by eliminating the
incorrect keys. A single distinguishing input pattern may elim-
inate/discriminate multiple incorrect key values. The attack is
successful when all incorrect key values are eliminated.

This paper focuses on defense against the SAT attack [14].
The specific contributions of this paper are as follows:

1) We analyze the strengths and weaknesses of the SAT at-
tack [14]. Based on the discriminating ability of individual
input patterns, we present a scenario that is hardest for the
SAT attack to break.

2) We present a lightweight SAT-Attack Resistant Logic
Locking (SARLock) technique that thwarts key-
distinguishing attacks. The proposed technique adds
only a few XOR/XNOR gates; however, the attack effort
increases exponentially with the number of key bits.
We demonstrate the effectiveness of our approach using
empirical attack results.

3) We demonstrate that SARLock can be used in conjunction
with existing logic locking techniques to protect against a
wide spectrum of attacks.

a

b

c
Y

G1

G2

G3 G4

G5

(a) Example circuit: majority of in-
puts [14].

Y

a
b

c

G1

G2

G3
G4

G5

K3

K2

K1

K3

K2

K1

(b) Circuit locked using XOR/XNOR key
gates. The correct key is value is 110.

Y

a
b

c

G1

G2

G3
G4

G5

K3

K2

K1

K3

K2

K1

(c) Locked circuit with inverters absorbed by
the key gates. The correct key value is 110.

Fig. 1: Logic locking using XOR/XNOR gates [12]. This technique is vulnerable to SAT attack [14].

4) We present an analysis of the lower bound on the number
of distinguishing input patterns (#DIPs) needed for a
successful SAT attack.

II. PRELIMINARIES: THE SAT ATTACK [14]
The SAT attack iteratively rules out incorrect key values

using distinguishing input patterns [14]. A distinguishing input
pattern Xd is an input value for which at least two different
key values, k1 and k2, produce differing outputs, o1 and o2,
respectively. Since o1 and o2 are different, at least one of the
key values or both of them are incorrect. It is possible for a
single DIP to rule out multiple incorrect key values.

The DIPs are found by constructing a miter-like circuit as
illustrated in Figure 2. The primary inputs are common to
the two copies of the locked circuit, while the key inputs are
left independent. The corresponding outputs of two circuits are
XORed and then ORed to generate diff signal. The conjunctive
normal form (CNF) of the resultant circuit is generated and
passed to a SAT solver. The SAT solver finds a DIP Xd for
which diff=1, i.e., the outputs of the two circuits are different.
Xd is applied to the functional IC, and correct output Id is
obtained. The input-output pair (Xd, Id) is used to identify
incorrect key values. However, a single pattern may not rule
out all incorrect keys. To rule out the remaining incorrect key
values, more distinguishing patterns are needed. A new pair
(Xd, Id) is added to the SAT formula in each iteration and the
SAT formula is updated. The attack is successful when no
further DIP is found, which implies that all incorrect key
values have been pruned.

Example. Let us consider the application of the SAT attack
on the example locked circuit in Figure 1. Figure 3 presents
the output of the original circuit in column Y, and the output
of the locked circuit for different key values in the following
columns. For three key inputs, there are eight possible key
values, which are represented as k0, k1,..., k7. When the SAT
attack is launched on the locked circuit, it takes four DIPs

Circuit copy A

diff

I1
I2

In

K1B K2B KnB

K1A K2A KnA

Circuit copy B
O1B

O2B

OnB

O1A

O2A

OnA
. . .

...

...

. . .

. . .

X1

X2

Xn

. . .

Fig. 2: Miter-like circuit to determine DIPs [14].

to identify the correct key [14]. In iteration 1, the DIP 011
is used. For this DIP, the key value k4 alone produces a
wrong output as highlighted in red. Thus, only one incorrect
key is ruled out in the first iteration. In the second and third
iterations, key values k1 and k7 are ruled out, using the
patterns 111 and 101, respectively. The pattern 100, used in
the fourth iteration, eliminates all incorrect keys and the attack
successfully identifies the correct key as k6.

The attack could have succeeded in the first iteration with
a single DIP 100, if this input pattern was tried first. Thus,
the execution time of the attack depends on the order in
which the input patterns are applied for the SAT attack. The
SAT attack, however, chooses the DIPs arbitrarily [14]. The
larger the number of incorrect key values ruled out per DIP,
the fewer the patterns needed for the attack, which implies a
smaller execution time of the attack algorithm. We propose
to use #DIPs needed for a successful attack as a metric
for evaluating the resilience of a logic locking technique
against the SAT attack.

III. RESISTING THE SAT ATTACK
The SAT attack is successful against the existing logic lock-

ing techniques as the #DIPs needed for the attack against
these techniques is relatively small; 250 or fewer patterns
are needed for a successful attack on 90% of the circuits in
the study in [14]. The existing logic locking techniques fail
to take into account the discriminating ability of individual
input patterns and are thus vulnerable to the SAT attack. For
example, in Figure 3, all incorrect key values k0-k5 and k7
produce an incorrect output for the DIP 100, and the SAT
attack could identify the correct key value using a single input
pattern. This represents the best-case scenario for the SAT
attack.

The worst-case scenario for the SAT attack arises when
the attack can discriminate at most one incorrect key
value with each DIP. The truth table in Figure 4 illustrates
SAT attack resistant locking for three primary inputs and three

!
!

! Output!Y!for!different!key!values! !
No.! a! b! c! Y! k0! k1! k2! k3! k4! k5! k6! k7! Pruned!key!values!!
0! 0! 0! 0! 0! 1! 1! 1! 1! 1! 1! 0! 1! !
1! 0! 0! 1! 0! 1! 1! 1! 1! 1! 1! 0! 1! !
2! 0! 1! 0! 0! 1! 1! 1! 1! 1! 1! 0! 1! !
3! 0! 1! 1! 1! 1! 1! 1! 1! 0! 1! 1! 1! iter!1:!k4!
4! 1! 0! 0! 0! 1! 1! 1! 1! 1! 1! 0! 1! iter!4:!all!incorrect!
5! 1! 0! 1! 1! 1! 1! 1! 1! 1! 1! 1! 0! iter!3:!k7!
6! 1! 1! 0! 1! 1! 1! 0! 1! 1! 1! 1! 1! !
7! 1! 1! 1! 1! 1! 0! 1! 1! 1! 1! 1! 1! iter!2:!k1!

Fig. 3: Analysis of the SAT attack against logic locking [14]. Columns
k0-k7 show the locked circuit’s output for different key values. Red
entries in each row denote an incorrect output. The correct key is k6.

!
!

! Output!Y!for!different!key!values!
No.! a! b! c! Y! k0! k1! k2! k3! k4! k5! k6! k7!
0" 0" 0" 0" 0" 1" 0" 0" 0" 0" 0" 0" 0"
1" 0" 0" 1" 0" 0" 0" 1" 0" 0" 0" 0" 0"
2" 0" 1" 0" 0" 0" 1" 0" 0" 0" 0" 0" 0"
3" 0" 1" 1" 1" 1" 1" 1" 0" 1" 1" 1" 1"
4" 1" 0" 0" 0" 0" 0" 0" 0" 1" 0" 0" 0"
5" 1" 0" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1"
6" 1" 1" 0" 1" 1" 1" 1" 1" 1" 0" 1" 1"
7" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1" 0"

Fig. 4: Resisting the SAT attack by controlling the discriminating
ability of input patterns. At most one incorrect key value corrupts
the output for any input pattern.

key inputs. In each row, there is at most one key value that
generates an incorrect output. As dictated by the truth table in
Figure 4, when the SAT attack is launched on a circuit with
|K| key bits, #DIPs ≥ 2|K| − 1. Thus, the attack effort
grows exponentially with |K|.
A. SARLock: SAT attack-resilient logic locking

To build a SAT attack resistant circuit that implements
a truth table similar to the one shown in Figure 4, in a
lightweight and scalable fashion, we use a small comparator
circuit. The comparator generates a flip signal that is asserted
for specific input and key value combinations. The flip signal
will be XORed with one of the primary outputs as shown in
Figure 5. To prevent the flip signal from being asserted for the
correct key value, such as 110 in Figure 4, a small mask logic
is inserted. The resulting locked circuit achieves the desired
resistance against the SAT attack at minimal overhead. We
refer to the proposed IP protection logic as SARLock.

For |K| key bits, the additional logic will consist of |K|+1
two-input XOR/XNOR gates and 2|K| + 1 two-input AND
gates. On increasing the key size, |K|, the area overhead grows
linearly, while there is an exponential increase in the #DIPs.
B. Results

In this section, we report the effectiveness of SARLock
against the SAT attack using empirical attack results2. We
compare SARLock with strong logic locking (SLL) [8], since
amongst the existing (SAT attack vulnerable) logic locking
techniques, SLL offers the best resilience to the other attacks
on logic locking [6], [8], [11], [13] (see Section VI).

Table I reports the #DIPs and the execution time of the
attack on SLL [8] for different key sizes |K|. SLL can be
broken with only a few DIPs. Moreover, the execution time of
the attack is below one second for all the benchmark circuits,
which demonstrates how vulnerable SLL [8] and existing
locking techniques are to the SAT attack.

?	
=	 K

IN
Y

Mask	
flip

Logic	
cone	

Fig. 5: SAT attack resistant circuit. The flip signal is asserted upon
a match between an input value and a key value.

2The experiments are conducted using ISCAS85 benchmark circuits and
OpenSPARC microprocessor controllers [15]. The SAT attack is executed on
a server with 6-core Intel Xeon W3690 CPU, running at 3.47GHz, with 24
GB RAM [14], [16].

Fig. 6: Area, power, and delay overhead of SARLock for different
values of |K|.

SARLock, however, exhibits strong resilience against the
SAT attack. As shown in Table II, the #DIPs for SARLock
grows exponentially with |K|, across all the benchmarks.
While the #DIPs doubles with each increment in |K|, the
change in execution time can be higher – 3× to 4× for most of
the circuits. The execution time varies across the benchmark
circuits, because the number of clauses in the SAT formula
of each circuit is different. Although the key size |K| used in
Table I and Table II is small, these key sizes are considered
for comparing #DIPs and execution time of the SAT attack
empirically. While the attack completes within a minute for
most circuits for |K| = 10, the attack takes about 4− 5 hours
for the OpenSPARC controller circuits for |K| = 14.

Figure 8 shows that the area and power overhead of SAR-
Lock increases linearly with |K|, as the number of gates
inserted by SARLock grows linearly with |K|. However,
the benefit from the security perspective is exponential. The
average delay overhead of SARLock is less than 0.7%.
C. Provably secure obfuscation

We now provide a security analysis of the SARLock from
the provable obfuscation perspective. The inputs to this logic
block are primary input IN and the key input K, while the
output is a single bit called flip. This logic block can be
represented as the Boolean function flip = F (IN,K).

For each incorrect key guess, Kincorr, to the SARLock
block, the output bit is different at only one input w.r.t.
the correct key input Kcorr. In other words, the function
F (IN,Kcorr) ⊕ F (IN,Kcorr ⊕ α), α ∈ {0, 1}n \ {0n} is
a one-point function3. The incorrect key Kincorr is defined as
Kcorr ⊕ α. The study in [17] shows that the implementation
of this one-point function can be provably obfuscated, giving
the attacker no advantage beyond having a black-box access to
the implemented netlist. For instance, the one-point function
can be obfuscated as:

F (IN,Kcorr)⊕F (IN,Kcorr⊕α) =
{

1, if rIN = rKcorr⊕α

0, otherwise

3A point function is a Boolean function that produces the output value 1
at exactly one point.

TABLE I: #DIPs and the execution time (s) of the SAT attack [14] to break SLL [8] for different values of |K|.
#DIPs Execution time (s)

Benchmark 10 11 12 13 14 10 11 12 13 14
s5378 8 9 9 10 13 0.2 0.2 0.2 0.2 0.2
c5315 4 3 4 5 3 0.3 0.3 0.3 0.3 0.3
c7552 8 9 9 9 12 0.7 0.5 0.5 0.5 0.5
s9234 7 13 13 10 12 0.2 0.3 0.3 0.3 0.3
IFU 8 8 9 13 11 0.1 0.1 0.1 0.1 0.1
LSUrw 4 5 5 7 9 0.1 0.1 0.1 0.1 0.1
FPUin 6 7 8 5 9 0.1 0.1 0.1 0.1 0.1
LSUex 5 5 8 8 6 0.1 0.1 0.1 0.1 0.1
SB 7 5 6 6 6 0.1 0.1 0.1 0.1 0.1
IFQ 9 7 9 9 8 0.2 0.2 0.2 0.2 0.2
TLU 7 6 7 9 10 0.3 0.3 0.4 0.3 0.4

TABLE II: #DIPs and the execution time (s) of the SAT attack [14] to break SARLock for different values of |K|.
#DIPs Execution time (s)

Benchmark 10 11 12 13 14 10 11 12 13 14
s5378 1023 2047 4095 8191 16383 62.6 177.9 996.1 2710.2 9374.6
c5315 1023 2047 4095 8191 16383 79.6 247.4 1188.1 3441.4 11122.5
c7552 1023 2047 4095 8191 16383 73.1 311.1 1276.6 3561.3 11761.5
s9234 1023 2047 4095 8191 16383 77.7 279.0 1235.2 3491.2 12330.9
IFU 1023 2047 4095 8191 16383 32.5 104.3 589.6 2216.8 6650.8
LSUrw 1023 2047 4095 8191 16383 37.3 120.5 618.0 1762.8 6133.0
FPUin 1023 2047 4095 8191 16383 34.9 112.8 650.0 1898.6 6390.0
LSUex 1023 2047 4095 8191 16383 36.0 130.4 690.4 1941.0 7104.9
SB 1023 2047 4095 8191 16383 50.8 149.3 825.2 2412.9 7845.9
IFQ 1023 2047 4095 8191 16383 67.9 232.6 1135.9 2958.1 10521.1
TLU 1023 2047 4095 8191 16383 81.2 271.7 1198.7 3341.4 11628.5

In the exponentiation operation, r is a generator of a multi-
plicative cyclic group G and IN , Kcorr⊕α are elements of G.
If the chosen family of groups is Z∗p, where p and q are primes
and p = 2q + 1, then recovering Kcorr ⊕ α from rKcorr⊕α

becomes a discrete logarithm (DL) problem. For large sizes of
the primes p and q (say 1024 bits), the DL problem is com-
putationally hard. Thus, an attacker cannot extract Kcorr ⊕ α
from rKcorr⊕α. Under a variant of decisional Diffie-Hellman
(DDH) assumption4 [18], this construction provably satisfies
the strong definition of obfuscation. Hence, this technique can
be used to hide Kcorr in the logic block F . However, the
implementation of 1024-bit modular exponentiation incurs a
large area overhead [19] and is, thus, impractical.
D. Is SARLock alone sufficient?

SARLock successfully thwarts the SAT attack [14]; how-
ever, it may not protect against other existing attacks, such
as the removal attack and the sensitization attack5 [10] (see
Section VI). In removal attacks, for instance, an attacker iden-
tifies the components/gates that belong to the lock circuitry and
removes them from the locked netlist. An attacker can obtain
the locked netlist either by reverse engineering or by stealing
it in the design house. Since, the SARLock logic is isolated
and not intertwined with the original circuit, the attacker can
easily separate it from the original circuit. To defend against
such attacks, SARLock should be coupled with other defenses.

IV. TWO-LAYER LOGIC LOCKING
To provide protection against a wide spectrum of attacks,

we propose to integrate SARLock with one of the existing

4The assumption mentions that there is no efficient probabilistic algorithm
that, given any triplet < ga, gb, gc > in G3, outputs “true” if a = bc, and
“false”, otherwise.

5Sensitization of an internal line l to an output O implies that any change
on l will be observable on O.

logic locking techniques [8], [10], [12] that are resilient against
reverse engineering attacks. From the existing (SAT attack
vulnerable) logic locking techniques, we choose SLL [8] since,
to the best of our knowledge, SLL offers the maximum pro-
tection against the known attacks [6], [8], [11], [13] on logic
locking. SLL inserts XOR/XNOR key-gates with increased
interference among them and protects a circuit from reverse
engineering and sensitization attacks [8] (see Section VI). By
intertwining the functional gates and the key gates, SLL hides
the implementation of a netlist, thwarting the removal attack.

To lock a particular circuit output, we propose SAR-
Lock+SLL, a technique that integrates SARLock with SLL.
Given |K| = |K1|+ |K2| key bits, SARLock+SLL will:

1) lock the logic cone (transitive fan-in of the output) with
SLL using |K1| key bits,

2) scramble K2 with K1, and protect the circuit with SAR-
Lock using the scrambled K2 bits.

The key K1 has two roles: it serves as the key for SLL,
and it scrambles the key K2. Scrambling K2 is important,
since otherwise, all the flips will occur in pre-determined
combinations of input and key values. Moreover, the scrambler
creates a dependency between the K1 and K2, thwarting the
removal attack, as will be explained further in Section IV-A.
SARLock+SLL is illustrated in Figure 7.

The scrambler logic can be chosen by the designer based
on the permissible overheads. For instance, a bus-based IC
protection technique [20] authorizes activation of each indi-
vidual chip by leveraging bit permutations as scrambler for
the bus data using a key unique to each IC. Some other
techniques comprise logic locking techniques [13] such as
XOR gates, arithmetic transformations such as addition and
subtraction, bit permutations using Benes network [20], and

TABLE III: #DIPs and the execution time (s) of the SAT attack [14] to break SARLock+SLL for different values of |K2|.
#DIPs Execution time (s)

Benchmark 10 11 12 13 14 10 11 12 13 14
s5378 1024 2048 4096 8191 16384 54.1 190.6 619.7 4351.8 10250.7
c5315 1024 2049 4096 8191 16383 75.4 252.9 829.1 4778.2 15874.9
c7552 1025 2049 4096 8191 16386 78.3 234.1 757.0 3165.3 14573.1
s9234 1027 2049 4102 8195 16386 77.2 247.9 864.1 3225.7 15532.3
IFU 1023 2056 4100 8206 16389 55.2 166.7 789.5 2309.8 10258.7
LSUrw 1025 2049 4096 8194 16383 58.2 152.0 626.9 1802.6 7466.6
FPUin 1025 2049 4097 8194 16384 28.4 135.0 1359.6 4497.6 15457.2
LSUex 1024 2049 4096 8194 16384 52.8 268.3 1137.2 3101.3 16707.1
SB 1026 2050 4099 8194 16386 69.2 257.4 1416.6 3304.6 19193.7
IFQ 1024 2048 4098 8192 16384 63.3 290.8 1644.7 4185.4 14563.1
TLU 1027 2052 4099 8195 16385 57.2 227.0 2238.7 3507.6 18760.3

crossbar switches [21].
A. Protection against attacks

The scrambler performs mixing of the keys K1 and K2 to
prevent the comparator and the mask circuits from leaking
explicit information about K1 and K2. The attacker needs to
determine the value of K1 to recover K2 from the scrambler.
To determine K1, the attacker needs to perform SAT attack
on the locked logic cone. This, in turn, depends on K2 as the
IC’s output is a function of both K1 and K2, and K2 is the
key for the SARLock circuit that resists the SAT attack. This
circular dependency not only thwarts the removal attacks, but
also enables SARLock+SLL to inherit the protection that SLL
offers against sensitization attacks [8].
B. Results

For the SAT attack on SARLock+SLL, we assume that
|K1| = |K2| = |K|/2. Table III reports the #DIPs for
different values of |K2|. Since, SLL [8] can be broken with
a small #DIPs, the #DIPs is increased only minimally
by integrating with SLL [8]. The same table shows that the
execution time of the SAT attack on SARLock+SLL is, on
average, 1.29 times higher than that for SARLock.

The average area, power and delay overhead for SAR-
Lock+SLL is 21.27%, 33.3%, and 4.95%, respectively, for
|K2| = 14. As shown in Figure 8, the overhead grows
only linearly with |K2|. The average delay overhead for
SARLock+SLL is, however, higher compared to SARLock.

Table IV presents a comparison of SARLock+SLL with
existing locking logic techniques, random logic locking
(RLL) [12] and SLL [8], for |K| = 64. While the SAT
attack [14] can break RLL [12] and SLL [8] within a second,
it will take about 3.1 × 109 seconds ≈ 100 years to break
SARLock+SLL. The average area, power and delay overhead
of SARLock+SLL is 35.2%, 61% and 9.3% respectively,
which is comparable to that of RLL [12] and SLL [8].

Locked	
Logic	
cone	

Scrambler	

? =

K2

K1

IN

Y

Mask	
flip

SLL

SARLock

Fig. 7: SARLock+SLL: two layer logic locking. |K1| key bits are
used for SLL [8] and |K2| key bits for SARLock.

Fig. 8: Area, power, delay overhead for SARLock+SLL for different
values of |K2|.

TABLE IV: Comparison of SARLock+SLL with RLL [12] and
SLL [8] for |K| = 64. #DIPs and execution time are extrapolated
based on empirical data.

RLL [12] SLL [8] SARLock+SLL
#DIPs 19 26 4.3E09
Exec. time (s) 0.4 0.7 3.1E09
Area (%) 29.6 32.2 35.2
Power (%) 45.0 59.2 61.0
Delay (%) 15.1 17.2 9.3

V. DISCUSSION

SAT attack resistance vs. corruptibility. SARLock thwarts
the SAT attack by corrupting/flipping the output bits selec-
tively, resulting in a small Hamming distance (HD) at the
outputs on applying incorrect keys [10]. There is a dichotomy
between the two security metrics, #DIPs and HD. A de-
signer can decide the optimal values of the #DIPs and the
HD, based on the application and the threat model. SARLock
is suitable for protecting the output of the control units in
microprocessors, where a single bit flip can vastly corrupt the
overall sequence of operations [22].

Flipping multiple output bits. SARLock aims to protect
the critical logic cones in a circuit while offering the maximum
resistance to the SAT attack. Flipping multiple output bits
simultaneously increases the HD, and must be traded off
carefully with the #DIPs. In a setting where SARLock is
designed to flip multiple outputs, its integration with logic
locking techniques that increase the HD [10] can be investi-
gated, and is part of our future work.

TABLE V: Comparing logic locking threat models.
Attack Attacker’s assets Attack method
Sensitiza-
tion [8]

1) Locked netlist
2) Activated IC

Sensitization of key bits
to outputs

Logic cone
analysis [6]

1) Locked netlist
2) Activated IC

Brute force on individual
logic cones

SAT [14] 1) Locked netlist
2) Activated IC

SAT-based algorithm that
rules out incorrect keys
iteratively

Hill climb-
ing [11]

1) Locked netlist
2) Test patterns and

responses

Key bit flipping guided
by the Hamming distance
between test response and
circuit output

Choice of the key sizes. SLL aims at maximizing the
clique size in a graph of key gates, dictating |K1|. The desired
#DIPs dictates |K2|.

Low-overhead SARLock. To reduce the overhead, SAR-
Lock can be selectively applied on only the crucial parts of
the design. Controllers typically represent the most valuable
IP in processors while at the same time occupying a small
area (≈ 1% [5]). In resource-constrained settings, protecting
the controllers alone can help achieve the security objectives
with a minimal overhead on the overall system.

VI. RELATED WORK
A. Logic locking techniques
• Random logic locking inserts XOR/XNOR key gates at

random locations in a netlist [12].
• Fault analysis based logic locking addresses the limitations

of RLE and locks an IC such that a random incorrect key
corrupts maximum output bits [10].

• Strong logic locking inserts key gates such that it becomes
difficult to sensitize key bits to primary outputs on an
individual basis [8].

B. Attacks against logic locking
Table V presents a summary of existing attacks against logic

locking and the corresponding threat models. The sensitization
attack generates key-leaking input patterns by analyzing the
locked netlist. These patterns are applied to the functional
IC to sensitize the key bits to the primary outputs [8]. The
logic cone analysis attack is based on a divide and conquer
approach [6]. It identifies the logic cone with the smallest
number of key bits and employs brute force to recover the
secret key. SARLock can be complemented with SLL to
defend against these attacks.

The SAT attack uses Boolean satisfiability techniques to
prune the incorrect key candidates (see Section II) [14].
The hill climbing search attack uses test data information to
guess the secret key for ICs that are activated prior to the
manufacturing test [11]. Unlike the SAT attack, where an
attacker can choose I/O pairs of his choice, hill-climbing attack
only uses I/O pairs in the test data set. SARLock also defends
against the hill-climbing attack, since it increases the #DIPs
to be greater than the number of I/O pairs in the test data set
(see Table II and Table III).

VII. ACKNOWLEDGEMENT
This work was supported by the National Science Founda-

tion, Computing and Communication Foundations (NSF/CCF)
under Grant 1319841.

VIII. CONCLUSION
We propose a logic locking technique, SARLock+SLL,

that thwarts key distinguishing attacks, and in particular, the
SAT attack [14], in addition to thwarting all the attacks that
SLL protects against [8], [11]. SARLock+SLL increases the
required number of distinguishing input patterns exponentially
with the key size, by reducing the number of key values
filtered in each iteration of the attack. Thus, the execution
time of the attack grows exponentially with the key size. The
extra hardware inserted by our proposed technique is provably
obfuscated to resist reverse engineering attacks. As part of our
future work, we plan to explore if SARLock logic alone can
be intertwined with the circuit, with minimal loss in #DIPs.

REFERENCES
[1] “Defense Science Board (DSB) study on High Performance Microchip

Supply,” 2005, [March 16, 2015]. [Online]. Available: www.acq.osd.
mil/dsb/reports/ADA435563.pdf

[2] R. Karri, J. Rajendran, K. Rosenfeld, and M. Tehranipoor, “Trustworthy
Hardware: Identifying and Classifying Hardware Trojans,” Computer,
vol. 43, no. 10, pp. 39–46, 2010.

[3] J. Rajendran, M. Sam, O. Sinanoglu, and R. Karri, “Security Analysis
of Integrated Circuit Camouflaging,” in Proc. ACM/SIGSAC Conference
on Computer & Communications Security, 2013, pp. 709–720.

[4] R. W. Jarvis and M. G. McIntyre, “Split Manufacturing Method for
Advanced Semiconductor Circuits,” March 2007, US Patent 7,195,931.

[5] Y. Alkabani and F. Koushanfar, “Active Hardware Metering for Intellec-
tual Property Protection and Security,” in Proc. USENIX Security, 2007,
pp. 291–306.

[6] Y.-W. Lee, N. Touba et al., “Improving Logic Obfuscation via Logic
Cone Analysis,” in Proc. IEEE Latin-American Test Symposium, 2015,
pp. 1–6.

[7] R. S. Chakraborty and S. Bhunia, “HARPOON: An Obfuscation-
Based SoC Design Methodology for Hardware Protection,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 28, no. 10, pp. 1493–
1502, 2009.

[8] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri, “Security Analysis
of Logic Obfuscation,” in Proc. IEEE/ACM Design Automation Confer-
ence, 2012, pp. 83–89.

[9] A. Baumgarten, A. Tyagi, and J. Zambreno, “Preventing IC Piracy Using
Reconfigurable Logic Barriers,” IEEE Des. Test. Comput., vol. 27, no. 1,
pp. 66–75, 2010.

[10] J. Rajendran, H. Zhang, C. Zhang, G. Rose, Y. Pino, O. Sinanoglu,
and R. Karri, “Fault Analysis-Based Logic Encryption,” IEEE Trans.
Comput., vol. 64, no. 2, pp. 410–424, 2015.

[11] S. M. Plaza and I. L. Markov, “Solving the Third-Shift Problem in IC
Piracy With Test-Aware Logic Locking,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 34, no. 6, pp. 961–971, 2015.

[12] J. Roy, F. Koushanfar, and I. L. Markov, “EPIC: Ending Piracy of
Integrated Circuits,” in Proc. Design, Automation and Test in Europe,
2008, pp. 1069–1074.

[13] G. K. Contreras, M. T. Rahman, and M. Tehranipoor, “Secure Split-
Test for Preventing IC Piracy by Uuntrusted Foundry and Assembly,”
in Proc. IEEE International Symposium on Defect and Fault Tolerance
in VLSI and Nanotechnology Systems, 2013, pp. 196–203.

[14] P. Subramanyan, S. Ray, and S. Malik, “Evaluating the Security of
Logic Encryption Algorithms,” in Proc. IEEE International Symposium
on Hardware Oriented Security and Trust, 2015, pp. 137–143.

[15] “OpenSPARC T1 Processor,,” 2015, [Nov 1, 2015].
[Online]. Available: {http://www.oracle.com/technetwork/systems/
opensparc/opensparc-t1-page-1444609.html}

[16] “Decryption tool binaries and benchmark circuits.” 2015, [Sep
30, 2015]. [Online]. Available: {https://bitbucket.org/spramod/
host15-logic-encryption}

[17] R. Canetti, “Towards Realizing Random Oracles: Hash Functions That
Hide All Partial Information,” in Proc. Annual International Cryptology
Conference, 1997, pp. 455–469.

[18] D. Boneh, “The Decision Diffie-Hellman Problem,” in Algorithmic
Number Theory. Springer, 1998, pp. 48–63.

[19] G. D. Sutter, J.-P. Deschamps, and J. L. Imaňa, “Modular Multiplication
and Exponentiation Architectures for Fast RSA Cryptosystem Based on
Digit Serial Computation,” IEEE Trans. Ind. Electron., vol. 58, no. 7,
pp. 3101–3109, 2011.

[20] J. A. Roy, F. Koushanfar, and I. L. Markov, “Protecting Bus-Based
Hardware IP by Secret Sharing,” in Proc. IEEE/ACM Design Automation
Conference, 2008, pp. 846–851.

[21] R. Naik and D. Walker, “Large Integrated Crossbar Switch,” in IEEE
International Conference on Wafer Scale Integration, 1995, pp. 217–227.

[22] N. Karimi, M. Maniatakos, A. Jas, and Y. Makris, “On the Correlation
between Controller Faults and Instruction-Level Errors in Modern Mi-
croprocessors,” in Proc. IEEE International Test Conference, 2008, pp.
1–10.

View publication statsView publication stats

https://www.researchgate.net/publication/304457091

