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a b s t r a c t

We present structure preserving integrators for solving linear quadratic optimal control
problems. The goal is to build methods which can also be used for the integration of
nonlinear problems if they are previously linearized. The equations are solved using an
iterative method on a fixed mesh with the constraint that at each iteration one can only
use results obtained in previous iterations on that fixed mesh. On the other hand, this
problem requires the numerical integration of matrix Riccati differential equations whose
exact solution is a symmetric positive definite time-dependent matrix which controls
the stability of the equation for the state. This property is not preserved, in general, by
the numerical methods. We analyze how to build methods for the linear problem taking
into account the previous constraints, and we propose second order exponential methods
based on the Magnus series expansion which unconditionally preserve positivity for this
problem and analyze higher order Magnus integrators. The performance of the algorithms
is illustrated with the stabilization of a quadrotor which is an unmanned aerial vehicle.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Nonlinear control problems have attracted the interest of researchers in different fields, e.g., the control of airplanes,
helicopters, satellites, etc. [1–3] during the last years. While the extensively studied linear quadratic optimal control
(LQ) problems can be used for solving simplified models, most realistic problems are inherently nonlinear. Furthermore,
nonlinear control theory can improve the performance of the controller and enable tracking of aggressive trajectories [4].

Solving nonlinear optimal control problems requires the numerical integration of systems of coupled non-autonomous
and nonlinear equations with boundary conditions for which it is of great interest to have simple, fast, accurate and reliable
numerical algorithms for real time integrations.

It is usual to solve the nonlinear problems by linearization, which leads to problems that are solvable by linear quadratic
methods. In general, they require the integration of matrix Riccati differential equations (RDEs) iteratively. The algebraic
structure of the RDEs appearing in this problem implies that their solutions are symmetric positive definite matrices, a
property that plays an important role for the qualitative and quantitative solutions of both the control and the state vector.

The differential equations to be solved take the form

Ẋ = F(t, X, P), X(0) = X0, t ∈ [0, T ]

Ṗ = R(t, X, P), P(T ) = PT
(1)
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where X ∈ Rn, P ∈ Rn×n. The equation for P corresponds to a matrix RDE with the solution being a positive definite matrix.
We solve this BVP by taking a fixed mesh, ti = ih, i = 0, 1, . . . ,N , with h = T/N , and using an iterative method

Pn+1
= φ(Xn, Pn),

Xn+1
= ϕ(Xn, Pn+1),

(2)

where

Xm
= (Xm

0 , X
m
1 , . . . , X

m
N ), Pm

= (Pm
0 , P

m
1 , . . . , P

m
N ), m = 0, 1, . . .

with limm→∞ Xm
i = X [∞]

i ≃ X(ti), and Xm
0 = X0, Pm

N = PT . Then, we look for a numerical method with the following
properties: (i) it only uses values from previous iterations which are evaluated on the fixed mesh, (ii) the algorithms are
computationally relatively cheap to evaluate at each iteration (the first iterations can differ considerably from the exact
solution and thus involved and computationally costly methods at each iteration are inefficient), (iii) the method has good
stability properties in order to allow for relatively large time steps and thereby reduce the storage requirements (Xn, Pn

have to be stored), (iv) the method preserves positivity for the approximations of P . Close to convergence, the last iteration
can be carried out using a more elaborated and accurate method which can use the values of previous iterations at several
mesh points.

The numerical integration of matrix RDEs has been extensively studied as well as high order methods which preserve
positivity [5,6] but all these methods, when applied to the iterative algorithm, require the evaluation of previous iteration
at points which are not in the mesh and thus do not satisfy property (i), which makes them inappropriate in this context.

Geometric numerical integrators are numerical algorithms which preserve most of the qualitative properties of the
exact solution. However, the mentioned positivity of the solution in this problem is a qualitative property which is not
unconditionally preserved by most methods, geometric integrators included.

We show that some loworder exponential integrators1 unconditionally preserve this property, and higher ordermethods
preserve it under mild constraints on the time step. We refer to these methods as structure preserving integrators, and they
will allow the use of relatively large time steps while showing a high performance for stiff problems or problems which
strongly vary along the time evolution.

The aforementioned nonlinearities in the control problems can be dealt with in different ways. We consider three tech-
niques to linearize the equations and the linear equations are then numerically solved using some exponential integrators
which preserve the relevant properties of the solution. Since the nonlinear problems are solved by linearization, we first
examine the linear problem in detail.

The paper is organized as follows: The linear case is studied in Section 2, where we emphasize the algebraic structure of
the equations and the qualitative properties of the solutions. We next consider some exponential integrators and analyze
the preservation of the qualitative properties of the solution by the proposed methods. In Section 3, it is shown how the full
nonlinear problem can – after linearization – be treated as a particular case of the non-autonomous linear one. The work
concludes with the application of the numerical algorithm to a particular example (control of a quadrotor) in Section 4, with
which the accuracy of the exponential methods is demonstrated. Numerical results and conclusions are included.

2. Linear quadratic (LQ) methods in optimal control problems

Let us consider the general LQ optimal control problem

min
u∈L2

 tf

0


XT (t)Q (t)X(t)+ uT (t)R(t)u(t)


dt (3a)

subject to Ẋ(t) = A(t)X(t)+ B(t)u(t), X(0) = X0, (3b)

where Ẋ(t) is the time-derivative of the state vector X(t) ∈ Rn, u(t) ∈ Rm is the control, R(t) ∈ Rm×m is symmetric and
positive definite, Q (t) ∈ Rn×n is symmetric positive semi-definite, A ∈ Rn×n, B ∈ Rn×m and MT denotes the transpose of a
matrix M .

Problems of the type (3) are frequent in many areas, such as game theory, quantum mechanics, economy, environment
problems, etc., see [7,8], or in engineering models [9, Chapter 5].

The optimal control problem (3) is solved, assuming some controllability conditions, by the linear feedback controller [10]

u(t) = −K(t)X(t), (4)

with the gain matrix

K(t) = R−1(t)BT (t)P(t),

1 We say that a method is an exponential integrator if it uses the computation of matrix exponentials in the algorithm. The same name also refers to a
class of numerical integrators used for solving quasilinear differential equations of the form: u̇ = Du+ N , where typically D is a stiff linear operator and N
is a slowly varying nonlinear part.
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and P(t) verifying the matrix RDE

Ṗ(t) = −P(t)A(t)− AT (t)P(t)+ P(t)B(t)R−1(t)BT (t)P(t)− Q (t), (5)

with the final condition P(tf ) = 0. The solution P(t) after backward time integration of (5) is a symmetric and positive
definite matrix when both Q (t) and R(t) are symmetric positive definite [11] (similar results also apply for the weaker
condition Q (t) positive semi-definite under general conditions on the matrices which make the system stabilizable and
detectable). To compute the optimal control u(t), we solve for P(t), and plugging the control law into (3b) yields a linear
equation for the state vector

Ẋ(t) =

A(t)− B(t)R−1(t)BT (t)P(t)


X(t), X(0) = X0,

to be integrated forward in time,withwhich the control is readily computed. Notice that S(t) = B(t)R−1(t)BT (t) is a positive
semi-definite symmetric matrix (positive definite if rank B = n) and P(t) is a positive definite matrix, and this is very
important for the stability of the solution for the state vector and ultimately for the control. A numerical integrator which
does not preserve the positivity of P(t) can become unstable when solving the state vector.

In this paper, exponential integrators, which belong to the class of Lie groupmethods (see [12,13] and references therein),
are proposed in order to solve the RDE (5). They are geometric integrators because they preserve some of the qualitative
properties of the exact solution.

2.1. Structure preserving integrators

Weare interested in numerical integratorswhich preserve the symmetry aswell as the positivity of P(t).While symmetry
is a property preserved by most methods, the preservation of positivity is a more challenging task.

For our analysis, it is convenient to review some results from the numerical integration of differential equations. Given
the ordinary differential equation (ODE)

ẋ = f (x, t), x(t0) = x0 ∈ Rn, (6)

the exact solution at time t = t0 + h can formally be written as a map that takes initial conditions to solutions, Φh(x0) =

x(t0 + h). For sufficiently small h, it can also be interpreted as the exact solution at time t = t0 + h of an autonomous ODE

ẋ = fh(x), x(t0) = x0,

where fh is the vector field associated to the Lie operator 1
h log(Φh).

In a similar way, a numerical integrator for solving the Eq. (6) which is used with a time step h, can be seen as the exact
solution at time t = t0 + h of a perturbed problem (backward error analysis)

ẋ = f̃h(x), x(t0) = x0,

and we say that the method is of order p if f̃h − fh = O(hp+1). The qualitative properties of the exact solutionΦh are related
to the algebraic structure of the vector field fh: If the vector field f̃h associated with the numerical integrator shares the same
algebraic structure, the numerical integrator will preserve these qualitative properties.

Given the RDE

Ṗ = PA(t)+ AT (t)P − PS(t)P + Q (t), P(t0) = 0,

which is equivalent to (5) with the sign of the time changed, i.e., integrated backward in time, andwithQ (t), S(t) symmetric
and positive definite matrices, then P(t), for t > t0, is also a symmetric and positive definite matrix. Thus, a numerical
integrator which can be considered as the exact solution of a perturbed matrix RDE

Ṗ = PÃh + ÃT
hP − PS̃hP + Q̃h, P(t0) = 0,

where Q̃h, S̃h are symmetric positive definite matrices will preserve the symmetry and positivity of the exact solution. The
same result applies if the numerical integrator is given by a composition of maps such that each one, separately, can be seen
as the exact solution of a matrix RDE with the same structure.

We will refer to these methods as positivity preserving integrators. If a method preserves positivity for all h > 0, we say
it is unconditionally positivity preserving and, if there exists h∗ > 0 such that this property is preserved for 0 < h < h∗, we
will refer to it as conditionally positive preserving.

In general, standard methods do not preserve positivity. We show, however, that some second order exponential
integrators preserve positivity unconditionally and higher order ones are conditionally positivity preserving for a relatively
large range of values of h∗ which depends on the smoothness in the time dependence of the matrices A(t), S(t),Q (t). At
this stage, it is convenient to rewrite the RDE (5) as a linear differential equation

d
dt


V (t)
W (t)


=


−A(t)T −Q (t)
−S(t) A(t)

 
V (t)
W (t)


,


V (tf )
W (tf )


=


Pf
I


, (7)
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Fig. 1. (Color online) Exact and numerical solutions for the problem (8) with parameters given in (9) and using the implicit Euler, trapezoidal andmidpoint
Runge–Kutta methods as well as the second order Magnus integrator.

where Pf = 0, S(t) = B(t)R−1(t)BT (t) and the solution P(t) of problem (5), to be integrated backward in time, is given by

P(t) = V (t)W (t)−1, P(t), V (t),W (t) ∈ Rn×n,

in the region where W (t) is invertible (see, for instance, [12] or [14], and references therein). If R(t) and Q (t) are positive
definite matrices, this problem always has a solution.

It is then clear that if a numerical integrator for the Eq. (7) can be regarded as the exact solution of an autonomous
perturbed linear equation

d
dt


V (t)
W (t)


=


−ÃT

h −Q̃h

−S̃h Ãh

 
V (t)
W (t)


,


V (tf )
W (tf )


=


Pf
I


,

where Q̃h and S̃h are symmetric and positive definite matrices, then the numerical solution is symmetric and positive
definite.

It is known that Runge–Kutta (RK)methods of order greater than one, applied to thematrix RDE (5) do not preserve posi-
tivity [5]. In [5] it is also shown that symplectic RKmethods, applied to theHamiltonian linear system (7), preserves positivity
if all the weights are positive. However, these methods require the evaluation of the functions in interior points which are
not available in our case. To illustrate the interest in the preservation of positivity, we present a very simple example.

Example 2.1. Let us consider the problem

ṗ = −q − 2a(t) p + s p2, p(tf ) = 0 (8)

where

q = s = 1, a(t) =
10

1 + exp(−4(t − tf /2))
, tf = 10, (9)

with h = 1/2 for the equation of p(t) and h = 1 for the equation of x(t),

ẋ = (a(t)− sp(t)) x, x(0) = 0.

We integrated the problem using the second order implicit trapezoidal and midpoint methods as well as the first order
implicit Euler method (which preserves positivity). The results are shown in Fig. 1, where we appreciate that the first order
implicit Euler method is superior (the results obtained with the second order Magnus integrator to be presented in the
next section are also included). The poor performance and non-positivity of the higher order standard implicit methods is
manifest.

If we are interested in high order numerical integrators, different classes of methods have to be explored. We consider a
particular class of exponential integrators referred to as Magnus integrators (see [15] and references therein).

2.2. Magnus integrators

Given the general linear equation

y′
= M(t) y, y(t0) = y0, (10)

with y ∈ Rp, and if we denote the fundamental solution by Φ(t, t0) ∈ Rp×p, such that y(t) = Φ(t, t0)y(t0), the Magnus
expansion gives us the formal solution (under certain convergence conditions, see [15] and references therein) as

Φ(t, t0) = exp (Ω(t, t0)) ,
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whereΩ(t, t0) =


∞

n=1Ωn(t, t0) and eachΩn(t, t0) is an element of the Lie algebra generated by n-dimensional integrals
involving n − 1 nested commutators ofM(t) at different instants of time. The first two terms are given by

Ω1(t, t0) =

 t

t0
M(s) ds, Ω2(t, t0) =

1
2

 t

t0
dt1

 t1

t0
[M(t1),M(t2)] dt2,

where [A, B] = AB − BA.
In the region of convergence of the Magnus expansion, the exact solution at time t = t0 + h is equivalent to the exact

solution of the autonomous linear equation

y′
=

1
h
Ω(t0 + h, t0) y, y(t0) = y0.

It is well known that the set of matrices
A B
C −AT


, (11)

with A, B, C ∈ Rn×n and B = BT , C = CT form the algebra of symplecticmatrices. This algebraic property is preserved by the
commutators and then any truncated Magnus expansion preserves symplecticity for this problem. However, the additional
property about the positivity (or negativity) of the skew diagonal matrices B, C is not always guaranteed when the series is
truncated. We analyze lower order methods and show that it is possible to build second order Magnus integrators which
unconditionally preserve positivity.

The first term in the expansion applied to (7) does not contain commutators and is given by

Ω1(t, t0) =


−

 t

t0
A(s)T ds −

 t

t0
Q (s) ds

−

 t

t0
S(s) ds

 t

t0
A(s) ds

 . (12)

Then, if we truncate the series after the first term and approximate the integrals for a time interval t ∈ [t0, t0 + h] using
a quadrature rule of second or higher order, we obtain a second order method.

It is well known that, if Q (t) is a symmetric positive definite matrix for t ∈ [t0, t0 + h], then Q̂h =
 t0+h
t0

Q (s) ds is also
symmetric positive definite. Suppose now that the integral is approximated using a quadrature rule

Q̃h ≡ h
k

i=1

biQ (t0 + cih) ≃

 t0+h

t0
Q (s) ds,

with ci ∈ [0, 1], i = 1, . . . , k. If


i bi > 0, we have:

(a) If bi > 0, i = 1, . . . , k, then Q̃h is a symmetric positive definite matrix.
(b) If ∃ bj < 0, for some value of j and ∥Q (tm)− Q (tn)∥ < C |tm − tn|, ∀tm, tn ∈ [t0, t0 + h], then ∃ h∗ > 0 such that Q̃h is a

symmetric positive definite matrix for 0 < h < h∗, and h∗ depends on C .

The same results also apply to S̃h.
A second order method which preserves positivity is constructed by taking the first term in the Magnus expansion (12)

and approximating the integrals by a second or higher order rulewith the constraint that all bi > 0. Themost natural choices
are the midpoint rule

Ψ
[2]
h = exp (hM(t + h/2)) = Φ(t + h, t)+ O(h3),

or the trapezoidal rule

Ψ
[2]
h = exp


h
2
[M(t + h)+ M(t)]


= Φ(t + h, t)+ O(h3). (13)

The latter of which is found more efficient since fewer evaluations of the functions in the algorithm are necessary as they
can be reused in the computation of X(t). If we consider the RDE (5) that corresponds to (10) with the data (7) and choose
an equidistant time grid tn = t0 + nh, 0 ≤ n ≤ N , with constant time step h = (tf − t0)/N and taking into account that
this equation has to be solved backward in time, we obtain

Vn
Wn


= exp


−

h
2
[M(tn)+ M(tn+1)]

 
Vn+1
Wn+1


⇒ P̃n = Vn W−1

n .

By construction, P̃n is a symmetric positive definite matrix. In addition, it is also a time symmetric second order
approximation to P(tn). In this way, the matrix functions A(tn), B(tn),Q (tn), R(tn) are computed at the samemesh points as
the approximations P̃h of P(t) and, as we will see, they can be reused for the forward time integration of the state vector.

 
 

 



6 P. Bader et al. / Journal of Computational and Applied Mathematics ( ) –

Let us consider the equation for the state vector, to be integrated forward in time, which takes the form

Ẋ = (A(t)− S(t)P̃h)X,

where we denote by P̃h the numerical approximations to P(t) computed on the mesh and P̃h,n ≃ P(tn). Notice that at the in-
stant t = tf −h, we have that P̃h,N−1 = P(tf −h)+O(h3) (local error) but at t = t0, afterN steps,we have P̃h,0 = P(t0)+O(h2)
(global error). This accuracy suffices to get a second order approximation for the numerical approximation to the state
vector.

If we use the sameMagnus expansion for the numerical integration of the state vector with the trapezoidal rule, we have
the algorithm

Xn+1 = exp

h
2
[Dn+1 + Dn]


Xn, Dm = Am − SmP̃h,m, m = n, n + 1,

where Am = A(tm), Sm = S(tm).
Finally, the controls which allow us to reach the final state in a nearly optimal way are computed via

un = −R−1(tn)BT (tn)Pn Xn.

Higher order Magnus integrators. Truncating the Magnus expansion at higher powers of h usually requires the computation
of matrix commutators. If we include, for example, the second term Ω2 in the exponent, we obtain Ψh ≡ exp (Ω1 +Ω2),
which agrees with the exact solution up to order four, i.e., Ψh = Φ(t + h, t) + O(h5). The sum Ω1 + Ω2 belongs to the
algebra of symplectic matrices, as given in (11), where the off-diagonal matrices B, C take an involved form. We will show
that positivity is conditionally preserved, however, unconditional preservation as for exp (Ω1) cannot be achieved.

For simplicity in the analysis, we consider commutator-free Magnus integrators (see [15,16] and references therein).
With the abbreviations

M(0)
=

 tn+h

tn
M(s) ds, M(1)

=
1
h

 tn+h

tn


s −


tn +

h
2


M(s) ds,

the following commutator-free composition gives an approximation to fourth-order

Ψ
[4]
CF = exp


1
2
M(0)

+ 2M(1)


exp

1
2
M(0)

− 2M(1)


= Φ(t0 + h, t0)+ O(h5).

Using the fourth-order Gaussian quadrature rule to approximate the integrals yields

Ψ
[4]
G = exp (h(βM1 + αM2)) exp (h(αM1 + βM2)) ,

where Mi ≡ M(tn + cih), i = 1, 2, c1 =
1
2 −

√
3
6 , c2 =

1
2 +

√
3
6 , α =

1
4 −

√
3
6 = −0.038 . . . < 0, β =

1
4 +

√
3
6 . This

composition will not preserve positivity unconditionally when applied to solve the RDE because α < 0. However, since
α + β =

1
2 the positivity will be conditionally preserved.

If we approximate the integrals using the Simpson rule, we have

Ψ
[4]
G = exp


h
12
(−M1 + 4M2 + 3M3)


exp


h
12
(3M1 + 4M2 − M3)


,

where M1 ≡ M(tn),M2 ≡ M(tn + h/2),M3 ≡ M(tn + h). As previously, one of the coefficients is negative and positivity is
not unconditionally preserved when the method is applied to the RDE.

Recall that the full problem requires the solution of two differential equations; suppose wewant to (backward) integrate
the matrix RDE with one of the fourth-order commutator-free methods and then use the same method for the (forward)
integration of the state vector, we need to use a time step twice as large for the forward integration (preferably with the
Simpson rule, since no interpolation is necessary).

As mentioned before, the main goal of this paper is to present a simple, fast, accurate and reliable numerical scheme
for nonlinear problems. As we will see, nonlinear problems are linearized, and the resulting linear equations are solved
iteratively. The solution of each iteration is plugged into the following iteration, and this requires to use a fixed mesh for all
methods. For this reason, the second order Magnus integrator is the optimal candidate among the previous and is used in
the numerical examples in Section 4.

3. The nonlinear control problem

Many problems in engineering can be stated as optimal control problems of the form

min
u∈L2

 tf

0


XT (t)Q (t, X(t))X(t)+ uT (t)R(t, X(t))u(t)


dt (14a)

subject to Ẋ(t) = fA (t, X(t))+ fB (t, X(t), u(t)) , X(0) = X0. (14b)
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Table 1
Algorithm A1 for the waveform relaxation and Algorithm A2 for the Taylor-
type linearization.

A1: waveform relaxation A2: linearization

n := 0; guess : X0(t), u0(t) n := 0; guess : X0(t), u0(t)
do do
n := n + 1 n := n + 1
compute: An−1(t), Bn−1(t) compute:

Ān−1(t), B̄n−1(t), C̄n−1(t)
solve (tf → 0) : Eq. (18) for Pn−1 solve (tf → 0) : Eq. (5) for Pn−1

solve (0 → tf ) : Eq. (17) for Xn solve (tf → 0) : Eq. (20) for V n

while|Xn
− Xn−1

| > tolerance solve (0 → tf ) : Eq. (19) for Xn

Check for feasibility of Xn while|Xn
− Xn−1

| > tolerance
Check for feasibility of Xn

This nonlinear optimal control problem is considerablymore involved than its linear counterpart. It is then usual to solve
the nonlinear problem by linearization, and this can be done in different ways. In the following, under the assumption that
fB depends linearly on u, we present three of them and compare their performances when the linear equations are solved
using exponential integrators.
State Dependent Riccati Equation (SDRE). For fA(t, 0) = 0 and fB(t, X, u) ≠ 0 for all t, X in the appropriate domains, the state
Eq. (14b) can be written in a non-unique way as

Ẋ(t) = A(t, X)X(t)+ B(t, X)u(t), X(0) = X0. (15)

The formulation (15) is the basic ingredient for the SDRE control technique [17,18]. Its formal similarity to the linear
problem (3) motivates the imitation of the optimal LQ controller by defining

u(t) = −R−1(t)BT (t, X(t))P(t, X)X(t) (16a)

where P(t, X) solves the now state-dependent algebraic Riccati equation

0 = −PA(t, X)− A(t, X)TP + PB(t, X)R(t, X)−1B(t, X)TP − Q (t, X). (16b)

One has to choose the unique positive definite solution of the algebraic Riccati equation and, combining (16a) with (15), the
closed-loop nonlinear dynamics are given by

Ẋ =

A(t, X)− B(t, X)R(t, X)−1B(t, X)TP(t, X)


X, X(0) = X0. (16c)

The usual approach is to start from X(0) = X0, and then to advance step by step in time by first computing P from (16b)
at each step and then applying the Forward Euler method on (16c). The application of higher order methods, such as
Runge–Kutta schemes, requires to solve implicit systems with (16b) and can thus be costly. In addition, if one is interested
in aggressive trajectories, the algebraic equation (16b) can considerably differ from the solution of the corresponding Riccati
differential equation, which affects the solution of the state vector, X , and ultimately the control in (16a).
Waveform relaxation. Alternatively, we can linearize (16c), by iterating

d
dt

Xn+1
=


A(t, Xn)− B(t, Xn)R(t, Xn)−1B(t, Xn)TP(t, Xn)


Xn+1. (17)

We start with a guess solution X0(t) and iteratively obtain a sequence of solutions, X1(t), X2(t), . . . , Xn(t). Again, the
iteration stops once consecutive solutions differ by less than a given tolerance. Here, P(t, Xn(t)) at each iteration is obtained
from

Ṗ = −PAn(t)− An(t)TP + PBn(t)Rn(t)−1Bn(t)TP − Q n(t), P(tf ) = 0, (18)

with An(t) ≡ A(t, Xn(t)), Bn(t) ≡ B(t, Xn(t)), etc.
This procedure is similar to what is known as waveform relaxation [19], however, the backward integration for P limits

the parallelizability in this application. This approach corresponds to freezing the nonlinear parts in (15) at the previous state
and then applying the optimal control law (4). It is worth noting that this technique can handle inhomogeneities by slightly
adapting the control law, at the cost of solving an inhomogeneous linear system, see below. The algorithms are illustrated
in Table 1.
Taylor-type linearization. Similarly to [20], we can Taylor-expand the vector field in (14b) around an approximate solution
Xn(t) and use optimal LQ controls for the approximated equation. The iteration step reads then

Ẋn+1(t) = Ān(t)Xn+1(t)+ B̄n(t)un+1(t)+ C̄n(t), (19)
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Fig. 2. Quadrotor schematic.

where

Ān(t) = DX fA

t, Xn(t)


+ DX fB


t, Xn(t), un(t)


,

B̄n(t) = DU fB(t, Xn,Un),

C̄n(t) = fA(t, Xn)+ fB(t, Xn, un)−

Ān(t) · Xn

+ B̄n(t) · un ,
and DX denotes the derivative with respect to X , etc. One starts with an initial guess, X0(t) and the iteration stops once
consecutive iterations differ by less than a given tolerance.

The inhomogeneity C̄n can be treated as a disturbance input and compensated by the controller [21]. The optimal control
then becomes

un+1(t) = −Rn(t)−1B̄n(t)
T 

Pn(t)Xn+1(t)+ V n(t)


where Pn(t) satisfies (5) with replacements A → Ān and B → B̄n, etc. and V n(t) is given by

V̇ =

PB̄R−1B̄T

− ĀT  V − PC̄, V (tf ) = 0 (20)

at each iteration. The linearization procedure is summarized in Table 1.
Note:We can solve non-homogeneous equationswithMagnus integrators as follows. Given the non-homogeneous equation

y′
= M(t) y + C(t), y(t0) = y0;

it can be formulated as a homogeneous one in the following way [12],

d
dt


y
1


=


M(t) C(t)
0T
n 0

 
y
1


, [y(0), 1]T = [y0, 1]T ,

where 0T
n = [0, . . . , 0] ∈ Rn.

4. Modeling the control of a quadrotor UAV

The optimal control of Unmanned Aerial Vehicles (UAV) has attracted great attention in recent years [2,3]. Helicopters
are classified as Vertical Take Off Landing (VTOL) aircraft and are among themost complex flying objects because their flight
dynamics are nonlinear and their variables are strongly coupled.

In this section, we address the optimal control of a quadrotor, i.e., a vehicle with four propellers, whose rotational speeds
are independent, placed around a main body [22–24,3,25]. Linear techniques to control the system have been frequently
used. The controllers are designed based on a simplified description of the system behavior (linearized models). While this
is satisfactory at hover and low velocities, it does not predict correctly the system behavior during fast maneuvers (most
controllers are specifically designed for low velocities) and in order to improve the performance, the nonlinear nature of
the quadrotor has to be taken into account [17,26]. In addition, problems can have time-varying parameters [27] or require
time-dependent state Ref. [25].

Under realistic conditions, real time calculations are necessary since the optimal control will have to adjust to
environmental changes, that are not accounted for in the model, and hence more efficient and elaborated algorithms have
to be designed.

LQ optimal controllers are widely used, in particular for the control of small aircraft [22,26], where they have shown to
produce better results than other standardmethods, like proportional integral derivativemethods (PID) [23]. The techniques
presented here, however, are valid for the general optimal LQ control problem (3).

For the illustration of ourmethods, we consider a VTOL quadrotor, based on themodel presented in [3,26] (and references
therein). Fig. 2 describes the configuration of the system, where φ, θ and ψ denote the rolling, pitching and yawing angles,
respectively. We assume some standard general conditions on the symmetric and rigid structure of the flying robot: the
center of mass is in the center of the planar quadrotor and the propellers are rigid.
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Table 2
Comparison of numericalmethods, type indicates the linearization procedure given by Section 3,where ARE stands for
Algebraic Riccati Equation and It. denotes the number of iterations necessary until convergence. The cost is a discrete
approximation of the integral in (14a). The computation time is roughly proportional to the number of iterations.

Type X(t) P(t) V (t) Cost It.

(S1) SDRE Euler ARE N/A 0.1114
(S2) Impl. Euler (IE) ARE N/A 0.1021

Optimum 0.0977

(W1) WAVE Euler Euler N/A 0.1071 3
(W2) IE IE N/A 0.1036 3
(W3) Magnus (13) Magnus N/A 0.0926 3

Optimum 0.0888

(T1) TAYLOR Euler Euler Euler N/A Inf
(T2) IE IE IE 0.0789 12
(T3) Magnus Magnus Magnus 0.0707 12

Optimum 0.0707

We remark that inhomogeneities fA(t, 0) = b(t), e.g., from gravitational forces, can be treated as disturbances, by adding
new state variables or by taking advantage of non-vanishing states, e.g., the altitude of the UAVwhen hover is searched [17].

An analysis of the dynamics of the quadrotor shows that the control of the attitude can be separated from the translation
of the UAV [26] and we focus our attention on the stabilization of the attitude, neglecting the gyroscopic effect. The state
vector is given by

X(t) =

φ(t), φ̇(t), θ(t), θ̇ (t), ψ(t), ψ̇(t)

T
∈ R6,

and the input vector u ∈ R3 is formed by linear combinations of the thrust of each propeller.
The system designer can choose the weight matrices to tune the behavior of the control according to the requirements,

R(t) is used to suppress certain movements and Q (t) limits the use of the control inputs. Usually, these matrices are
chosen constant, positive definite and often even diagonal, see [22, p. 67], [3,25]. For the numerical experiments, we have
implemented the problem (14) with the following values taken from [1,26]

a1,2 = a3,4 = a5,6 = 1, a2,4 = λα1I1ψ̇, a2,6 = λ(1 − α1)I1θ̇

a4,2 = λα2I2ψ̇, a4,6 = λ(1 − α2)I2φ̇, a6,2 = λα3I3θ̇ ,

a6,4 = λ(1 − α3)I3φ̇, b2,1 = L/Ix, b4,2 = L/Iy, b6,3 = 1/Iz

(21)

where αi reflects the non-uniqueness in the SDRE formulation, λ denotes the inflow ratio, L is the length of the arms
connecting the propellers with the center and the relative moments of inertia are I1 = (Iy − Iz)/Ix, I2 = (Iz − Ix)/Iy, I3 =

(Ix − Iy)/Iz . Here,mi,j denotes the element located at i-th row and j-th column of the matrixM . Other entries of A(t) ∈ R6×6

and B(t) ∈ R6×3 not indicated in (21) are null elements.
The numerical values are extracted from [1] and are given in the SI units

Ix = 0.0075, Iy = 0.0075, Iz = 0.0130, L = 0.23, λ = 1, αi = 1.

The weight matrices are fixed at

Q = 0.01 · diag{ 1, 0.1, 1, 0.1, 1, 0.1} ∈ R6×6, R = diag{1, 0.1, 1} ∈ R3×3.

We set the time frame to tf = 10 s, with a stepsize of h = 0.125 s and initial state

X0 = (70°, 10, 70°, 20,−130°,−1)T ,

that corresponds to a disadvantageous orientation and high rotational velocities that are sought to be stabilized at 0 ∈ R6

at the final time tf .
We have implemented a variety of methods to test against the Magnus integrators presented in Section 2.2. As initial

condition, we have taken X0(t) = (1 − t/tf )X0 and the iteration was stopped when ∥Xn
− Xn−1

∥2 < 10−3. We use the
explicit and implicit Euler methods as well as the second order Magnus integrator. Some experimental results are given in
Table 2, where we can see that theMagnus basedmethod (13), approximates the optimal control best. However, we have to
remark that the SDRE method is for the given parameters about a factor ten faster, due to necessary iterations for the other
schemes.

Fig. 3 shows the controls obtained for the schemes S2, W3, T3 and Fig. 4 shows themotion of the quadrotor angles subject
to the controls. We can appreciate how theMagnus methods maximize the use of the controls to reach an overall minimum
of the cost functional.

From the numerical experiments we conclude that Lie group methods such as Magnus integrators which preserve the
positivity of the solution of the matrix RDE are very useful tools for solving optimal control problems of UAV.
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Fig. 3. Evolution of the control vector. The left column shows the control that has been least penalized u2 . All curves are given for all methods S2 (line),
W3 (diamond) and T3 (cross).

Fig. 4. Evolution of the orientation of the quadrotor (top row) and angular velocities (bottom). The left column shows the coordinates θ(t) and θ̇ (t),
whereas the remaining coordinates φ(t), φ̇(t) andψ(t), ψ̇(t) are depicted in the right column. All curves are given for all methods S2 (line), W3 (diamond)
and T3 (cross).

5. Conclusions

We have presented structure preserving integrators based on theMagnus expansion for solving linear quadratic optimal
control problems. The schemes considered require the numerical integration of matrix RDEs whose solutions, for this class
of problems, are symmetric and positive definite matrices. The preservation of this property is very important to obtain
reliable and efficient numerical integrators. While geometric integrators preserve most of the qualitative properties of
the exact solution, the preservation of positivity for the matrix RDE is, in general, not guaranteed. We have shown that
some symmetric second order exponential integrators (Magnus integrators) preserve this property unconditionally and,
in addition, are very appropriate to build simple and efficient numerical algorithms for solving nonlinear problems by
linearization. The performance of the methods is illustrated with an application to stabilize a quadrotor UAV. The results
shown for a quadrotor easily extend to other helicopters.

For more involved trajectories, the structure of the equations will play amore important role and themethods presented
in this work could be very useful in those cases. Additionally, in more difficult settings, e.g., in the case of trajectory
following or obstacle avoidance, stronger time dependences of the parameters are expected, making standard methods
more susceptible to instabilities, and thus, the advantages of the exponential methods are expected to be amplified. This
tendency highlights these applications as interesting for further investigation.

 
 

 



P. Bader et al. / Journal of Computational and Applied Mathematics ( ) – 11

Acknowledgments

This work has been partially supported by Ministerio de Ciencia e Innovación (Spain) under the coordinated project
MTM2010-18246-C03 and the Universitat Politècnica de València throughout the project 2087. PB also acknowledges the
support through the FPU fellowship AP2009-1892.

References

[1] S. Bouabdallah, Design and control of quadrotors with application to autonomous flying, Ph.D. Dissertation, EPFL, 2006.
[2] A. Budiyono, S.S. Wibowo, Optimal tracking controller design for a small scale helicopter, J. Bionic Eng. 4 (2007) 271–280.
[3] P. Castillo, R. Lozano, A.E. Dzul, Modelling and Control of Mini-Flying Machines, in: Advances in Industrial Control Series, Springer, London, England,

2005.
[4] P. Castillo, R. Lozano, A. Dzul, Stabilization of a mini rotorcraft with four rotors, experimental implementation of linear and nonlinear control laws,

IEEE Control Syst. Mag. (2005) 45–55.
[5] L. Dieci, T. Eirola, Positive definiteness in the numerical solution of Riccati differential equations, Numer. Math. 67 (1994) 303–313.
[6] L. Dieci, T. Eirola, Preserving monotonicity in the numerical solution of Riccati differential equations, Numer. Math. 74 (1996) 35–48.
[7] S. Blanes, E. Ponsoda, Magnus integrators for solving linear-quadratic differential games, J. Comput. Appl. Math. 236 (2012) 3394–3408.
[8] J. Engwerda, LQ Dynamic Optimization and Differential Games, John Wiley and sons, 2005.
[9] B.D.O. Anderson, J.B. Moore, Optimal Control. Linear Quadratic Methods, Dover Publications, New York, 2007.

[10] D. Kirk, Optimal Control Theory, An Introduction, Dover Publ., Mineola, New York, 2004.
[11] H. Abou-Kandil, G. Freiling, V. Ionescu, G. Jank, Matrix Riccati Equations in Control and Systems Theory, Virkäuser-Verlag, Basel, 2003.
[12] S. Blanes, E. Ponsoda, Time-averaging and exponential integrators for non-homogeneous linear IVPs and BVPs, Appl. Numer.Math. 62 (2012) 875–894.
[13] A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett, A. Zanna, Lie group methods, Acta Numer. 9 (2000) 215–365.
[14] L. Jódar, E. Ponsoda, Non-autonomous Riccati-type matrix differential equations: existence interval, construction of continuous numerical solutions

and error bounds, IMA J. Numer. Anal. 15 (1995) 61–74.
[15] S. Blanes, F. Casas, J.A. Oteo, J. Ros, The Magnus expansion and some of its applications, Phys. Rep. 470 (2009) 151–238.
[16] S. Blanes, P.C. Moan, Fourth- and sixth-order commutator-free Magnus integrators for linear and non-linear dynamical systems, Appl. Numer. Math.

56 (2006) 1519–1537.
[17] T. Çimen, State-dependent Riccati equation (SDRE) control: a survey, in: Proc. of the 17th IFAC World Congress, IFAC’08, Seoul, Korea, 2008,

pp. 3761–3775.
[18] J. Cloutier, State-dependent Riccati equation techniques: an overview, in: Proc. of the American Control Conference, Albuquerque, New Mexico,

vol. 2, 1997, pp. 932–936.
[19] J. White, F. Odeh, A.S. Vincentelli, A. Ruehli, Waveform relaxation: theory and practice, Trans. Soc. Comput. Simulation 2 (1985) 95–133.
[20] E. Ponsoda, S. Blanes, P. Bader, New efficient numerical methods to describe the heat transfer in a solid medium, Math. Comput. Modelling 54 (2011)

1858–1862.
[21] A. Bryson Jr., Y.C. Ho, Applied Optimal Control, Halsted, 1975.
[22] C. Balas, Modelling and linear control of a quadrotor, M.Sc. Thesis, School of Engineering, Cranfield University. England, 2007.
[23] S. Bouabdallah, A. Noth, R. Siegwart, PID vs LQ control techniques applied to an indoormicro quadrotor, in: Proc. of the IEEE/RSJ Int. Conf. on Intelligent

Robots and Systems, IROS 2004, vol. 3, 2004, pp. 2451–2456.
[24] P. Castillo, A. Dzul, R. Lozano, Real-time stabilization and tracking of four rotor mini-rotorcraft, IEEE Trans. Control Syst. Technol. 12 (2004) 510–516.
[25] I.D. Cowling, J.F. Whidborne, A.K. Cooke, Optimal trajectory planning and LQR control for a quadrotor UAV, in: Proc. UKACC Int. Conf. Control 2006,

ICC 2006, Glasgow, UK, 2006.
[26] H. Voos, Nonlinear state-dependent Riccati equation control of a quadrotor UAV, in: Proc. Int. Conf. Control Appl., Munich, Germany, 2006,

pp. 2547–2552.
[27] R. Zhang, Q. Quan, K.-Y. Cai, Attitude control of a quadrotor aircraft subject to a class of time-varying disturbance, IET Control Theory Appl. 5 (2011)

1140–1146.

 
 

 

http://refhub.elsevier.com/S0377-0427(13)00516-5/sbref2
http://refhub.elsevier.com/S0377-0427(13)00516-5/sbref3
http://refhub.elsevier.com/S0377-0427(13)00516-5/sbref4
http://refhub.elsevier.com/S0377-0427(13)00516-5/sbref5
http://refhub.elsevier.com/S0377-0427(13)00516-5/sbref6
http://refhub.elsevier.com/S0377-0427(13)00516-5/sbref7
http://refhub.elsevier.com/S0377-0427(13)00516-5/sbref8
http://refhub.elsevier.com/S0377-0427(13)00516-5/sbref9
http://refhub.elsevier.com/S0377-0427(13)00516-5/sbref10
http://refhub.elsevier.com/S0377-0427(13)00516-5/sbref11
http://refhub.elsevier.com/S0377-0427(13)00516-5/sbref12
http://refhub.elsevier.com/S0377-0427(13)00516-5/sbref13
http://refhub.elsevier.com/S0377-0427(13)00516-5/sbref14
http://refhub.elsevier.com/S0377-0427(13)00516-5/sbref15
http://refhub.elsevier.com/S0377-0427(13)00516-5/sbref16
http://refhub.elsevier.com/S0377-0427(13)00516-5/sbref19
http://refhub.elsevier.com/S0377-0427(13)00516-5/sbref20
http://refhub.elsevier.com/S0377-0427(13)00516-5/sbref21
http://refhub.elsevier.com/S0377-0427(13)00516-5/sbref24
http://refhub.elsevier.com/S0377-0427(13)00516-5/sbref27

	Structure preserving integrators for solving (non-)linear quadratic optimal control problems with applications to describe the flight of a quadrotor
	Introduction
	Linear quadratic (LQ) methods in optimal control problems
	Structure preserving integrators
	Magnus integrators

	The nonlinear control problem
	Modeling the control of a quadrotor UAV
	Conclusions
	Acknowledgments
	References


