

International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT) - 2016

978-1-4673-9939-5/16/$31.00 ©2016 IEEE

Abstract—With increasing complexity of electronic circuits,

the design and optimization of electronic circuit needs to be
automated with high degree of reliability and accuracy. In order
to optimize hardware requirement of digital combinational
circuits, evolutionary and innovative techniques need to be
enforced at various levels such as gate level and device level. This
paper presents the use of one of the evolutionary techniques, i.e.,
Particle Swarm Optimization (PSO) algorithm. It is motivated by
the social behaviour of organisms for the optimal design of
combinational logic circuit with a reduced gate count in
MATLAB platform. Results are presented to confirm that the
PSO based algorithm is superior to Human Design Method in
terms of time, effort and especially the gate count required to
design the digital combinational circuits. The paper shows that
PSO based algorithm converges faster than other algorithms
such as genetic algorithm and also reduces the computational
complexity.

Keywords—Combinational Circuit; Optimization; Human

Design Method; Particle Swarm Optimization.

I. INTRODUCTION
Different methods available for designing the combinational

circuits can be broadly classified as Human Design and
Automated Computational Intelligent methods. Some of the
human design methods for circuit minimization are Karnaugh
Map [1], Quine’ McCluskey [2] and Sasao method [3]. Some
of the automated computational intelligent methods are based
on Genetic Algorithm, Artificial Neural Network (ANN),
Fuzzy Logic and Particle Swarm Optimization (PSO) [4]. In
combinational circuit design, optimization is required to
reduce the gate count and thereby reducing the circuit area and
the cost. This improves the power consumption and the system
reliability, which are the basic requirements in today’s
portable circuits. One of the bottlenecks with human design is
that it becomes cumbersome and problematic when number of
inputs and outputs or complexity of the function is increased.
One more advantage of computational method over human
design is that it can be made automated using programming
which results in faster and better optimization.

Recently, researchers have designed combinational circuit
using Genetic Algorithm [9]. It uses number of chromosomes
and their fitnesses are being updated over the generations and
the chromosome having the best fitness finally survives.

Genetic Algorithm takes more time to converge, resulting in
its limited real world applications. Recently a new technique

called Particle Swarm Optimization (PSO) has emerged as a
computation method that optimizes a problem by iteratively
trying to enhance the particle solution in order to get the near
global optimal results [5]. PSO finds its applications in
optimization problems in science and engineering involving
nonlinear objective function [6]. This paper proposes a method
to optimally design the combinational circuit using PSO
implemented in MATLAB platform.

II. PARTICLE SWARM OPTIMIZATION

R. Eberhart and J. Kennedy first proposed the concept of
PSO technique [7] as an evolutionary computation technique
in 1995. It is a random optimization technique based on the
social behaviour of a flock of birds or a school of fish and the
swarming theory [8]. In PSO, it starts with initializing a
population of random solutions and searches for the optimum
solution by updating those random solutions in each
generation. The population of potential solutions is made up of
particles which fly in search of the optimum solution in multi-
dimensional search space. Each particle is associated with a
particular position and velocity in the swarm. The velocity and
position of each particle is updated in each iteration. Each
particle updates its personal best position (p_best) that it has
reached with updated position and velocity in the multi-
dimensional search space with respect to the desired function
and there is global best (g_best) which is the overall best
position reached by any particle in the swarm towards its
target in the multi-dimensional search space. In PSO, the
velocity and the position of each particle are changed in each
iteration towards its p_best and g_best locations. Velocity can
be weighted by using separate random numbers for
acceleration towards p_best and g_best locations.

PSO differs from Genetic Algorithm (GA) as PSO has no
evolutionary operators such as crossover and mutation. GA
deals with discrete values whereas PSO can deal with any
values [9].

The approach of PSO algorithm used for evolving digital
circuits was first reported in [5]. The steps of the PSO
algorithm as implemented for the design of the digital
combinational circuit are given below:

Optimal Design of Full Adder Circuit using
Particle Swarm Optimization Algorithm

R. Das1, A. Kumar1, S. Kumar1, P. K. Prasad1, R. Kar1, D. Mondal1, S.P. Ghoshal2
1Department of Electronics and Communication Engineering, NIT Durgapur, India-713209

2Department of Electrical Engineering, NIT Durgapur, India-713209
1rupjyotidas90@gmail.com

2023

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT) - 2016

978-1-4673-9939-5/16/$31.00 ©2016 IEEE

Step 1. In multi-dimensional search space, initialize the
group of particles with random positions and
velocities.

Step 2. These initialized random positions are assigned as
p_best of the corresponding particles.

Step 3. Fitness function of each particle is calculated for
these initial random positions.

Step 4. p_best of the particles with the highest fitness is
assigned as g_best.

Step 5. Update the velocity of each particle according to
(1) and the position of each particle according to
(2).

Step 6. Fitness of each particle is calculated for those
updated positions.

Step 7. For each particle in swarm, compare the particle’s
current fitness with the fitness achieved so far with
p_best position. If the current fitness of a particle
is better, then set this position as the p_best.

Step 8. Identify the particle which has the best fitness
value and assign the position of the particle as
g_best.

Step 9. Repeat steps 5-8 until the terminating condition is
reached or the maximum iterations are reached.

To update the velocity and the position of the particle, the
following equations are used:

)_(

)_(

22

11)1(

IN

ININNI

XbestgrandC

XbestprandCVW IV
−××

+−××+×=+
 (1)

ININI XVX += ++)1()1((2)

where XIN and VIN are the position and the velocity of the ith

particle at the nth iteration, respectively. 1rand and 2rand are
two random numbers. W is known as the inertial weight which
controls the velocity of the particle in the multi-dimensional
search space. Ibestp _ is the ith particle’s best position.

bestg _ is the best position achieved so far by all the
particles. C1 and C2 are known as cognition and social
components, respectively. They are the acceleration constants
used to change the velocities of particles towards p_best and
g_best.

III. DESIGNING OF DIGITAL COMBINATIONAL CIRCUIT USING
PSO

PSO is used in this paper to design and optimize the digital
circuit. The above described algorithm is illustrated in Figure
1 [10]. Initially, the particles are initialized randomly. After
that the particles are evaluated in terms of circuit and those are
compared with the desired circuit. Here the ‘desired circuit’
refers to the circuit which needs to be designed having exactly
the same outputs for corresponding input combinations as
given in the truth table for digital circuits. After each iteration,
the fitnesses are evaluated for those circuits by comparing
their outputs with the outputs of the desired circuit given by
the truth table. The fitness is incremented by one whenever the
outputs of each evolved circuit are matched with the
corresponding outputs of the truth table. This process is
repeated for all possible combinations of inputs. For example,

in case of a Full Adder circuit there are three inputs. So, eight
different combinations of input are possible. As a result, the
process of updating the fitness is repeated for eight times for
each particle. Then in the next iteration, the velocity of each
particle is updated according to (1) and the position of the
particle is updated as per (2). Then with the updated positions
of the particles, fitnesses are evaluated. This process is
repeated until the terminating condition is met. Terminating
condition can be the maximum iteration or the maximum
fitness achieved.

Fig. 1. Flow chart of circuit design.

A. Representation of Digital Combinational Circuit
The digital circuits that need to be optimized using PSO are

represented in the form of grid as shown in Figure 2 [5], [11],
[12].

Fig. 2. Structure of the Grid.

The grid shown in Figure 2 has m rows and n columns. So,

it contains mn number of elements. Each element in the grid is
nothing but a basic gate having 2 inputs and 1 output. All
these mn gates constitute the circuit. In the experiment of Full
Adder, there are 3 inputs. So, a 3×3 grid is used. The inputs to

Random
particle

Evaluate evolved
circuit and compare

with the desired circuit

Terminating
condition
reached?

Desired
circuit

Regenerating
circuit using PSO

I

N

P

U

T

O

U

T

P

U

T

R1

R2

R3

S1

S2

S3

F1

F2

F3

Evaluate fitness

Yes

No

2024

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT) - 2016

978-1-4673-9939-5/16/$31.00 ©2016 IEEE

the first column of the grid come from the primary inputs, i.e.,
the inputs of circuit to be implemented. In this design, they are
A, B and C. The inputs to all other column elements may
come from primary inputs or outputs of any other columns.
For example R1, R2 and R3 denote the outputs of the gates in
the first column, respectively, and S1, S2 and S3 denote the
outputs of the gates in the second column, respectively. F1, F2
and F3 constitute one single element which represents the
overall output of the circuit.

B. Encoding the circuit

A MATLAB code is written to implement PSO algorithm to
optimize the digital circuit. In the MATLAB program the grid
of Figure 2 is depicted in the form of a matrix. The order of
the matrix depends on grid size. In this paper the 3x3 grid is
represented with the help of a 7x3 matrix, each row of the
matrix denotes a gate. First and third column elements denote
its inputs and the second column elements denote the type of
gates. For this purpose Table I and Table II [10] are used to
describe those gates. Five different types of gates AND, OR,
XOR, NOT and WIRE have been used. WIRE is a gate where
output is equal to input. Switch case function is used to
describe the operation of each gate. The grid is converted to
matrix in a column-wise manner. The program starts scanning
that grid from the first column. Then it goes through all the
rows of column 1 from top to bottom. After that it starts
scanning the next column in the same top to bottom manner.
The process continues till the last row of the last column is
reached. So, the 1st row of the matrix is for the first column
first row element of the grid. The output of this row will be
R1.

TABLE I. ENCODING OF 2ND COLUMN
Matrix value
of 2nd column

Type of gate

1 AND
2 OR
3 XOR
4 NOT
5 WIRE

TABLE II. ENCODING OF 1ST AND 3RD COLUMNS

Matrix value of 1st column
and 3rd column

Input

1 A
2 A
3 B
4 B
5 C
6 C
7 R1
8 R2
9 R3
10 S1
11 S2
12 S3
13 F

Initially, p is the number of swarm particles (in this case p =
5), random circuits gates and input matrices are initialized. For
this purpose matrix X1 to X5 have been used as shown in
Figure 3 [10].

In the following way these matrices are encoded into the
circuit. For example, consider X1 matrix. X1(1, 1) = 1
indicates that the first input to the first column-first row
element of the grid is A. X1(1, 3) = 3 indicates that the second
input to the first column-first row element of the grid is B.
X1(1, 2) = 1 indicates that the first column-first row element
of the grid is AND gate. So, R1 = A AND B.

X1 =

0410
000
000
837
000
523
311

 X2 =

0410
000
000
827
000
513
511

 X3 =

0410
000
000
817
000
531
331

X4 =

1137
000
918
000
531
321
511

 X5 =

1039
000
000
837
333
511
321

If an element in the matrix is 0, then there is neither an

input nor a gate. For example, X1(3, 1) = 0 indicates there is
no input and X1(3, 2) = 0 indicates there is no gate at the first
column third row element in the grid.
 In the next step, digital circuit is formed corresponding to
each matrix. For each circuit all possible binary input
combinations, i.e., primary inputs are applied and their
corresponding output values (i.e., values of F) are obtained.
Then those outputs are compared with the outputs of the
desired circuit. If the output of the developed circuit matches
exactly with the desired circuit, the fitness value for the
corresponding circuit is incremented by 1. In this paper, Full
Adder circuit is designed which is a three input combinational
circuit having 23 (=8) possible input combinations. So, the
prime objective is to get the fitness value equals to eight.

After calculating the fitnesses of all the circuits
corresponding to all the matrices, position matrix having the
highest fitness value of a particular particle till current
iteration is recorded. That matrix becomes p_best matrix for
that particle. The position matrix having the highest fitness
value is recorded and that matrix is assigned as g_best matrix.
In each iteration, the positions of the particles are updated
according to (1) and velocities of the particles are updated
according to (2). These processes are repeated until the
terminating condition is reached which is maximum number
of iterations or the desired fitness value.
 The value of the parameters of PSO algorithm cannot be
generalized. It depends on the applications, for which it is
being implemented [13], [14]. The value of rand1 and rand2
used in (1) should be in between 0 and 1. The velocity has
been initialized as zero in many papers. In this paper, the
velocity has been initialized as 0.1. Due to updating particle

Fig 3. Initial Random Matrix.

2025

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT) - 2016

978-1-4673-9939-5/16/$31.00 ©2016 IEEE

velocity in each iteration, it may become too high or too low.
So, it is required to set some upper and lower bounds of the
velocity. For this purpose (3) and (4) [15] are used.

0min =V (3)
2.0)(minmaxmax ×−= XXV (4)

The cognition and social components, C1 and C2 in (1) should
be selected in such a way that sum of them is equal to 4. In
this paper, C1 = C2 = 2 are taken. The value of inertia weight,
W ranges from 0.4–0.9. But the optimum solution can be
achieved with low processing time by using dynamic inertia
weight through time varying process. The time varying
techniques for inertia weight can be either linear or nonlinear
and decreasing or increasing. Linearly decreasing time varying
technique has been widely used for inertia weight. In this
technique, inertia weight value is linearly decreased from its
maximum value, Wmax to its minimum value, Wmin. Linearly
decreasing inertia weight has been defined in (5) [16].

maxmaxminmaxmin /)()(IterIterIterWWWW −×−+= (5)
where Itermax is the maximum number of iterations and Iter is
the current iteration.

Both human design method and the PSO based method use
the following truth table to design the Full Adder circuit. The
Full Adder circuit designed using human method from the
truth table (using Karnaugh map) is shown in Figure 4.

TABLE III. TRUTH TABLE OF FULL ADDER

Inputs Outputs
A B C Sum Carry
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Fig 4. Full Adder circuit designed by using K-map (Human Design).

IV. SIMULATION RESULTS AND DISCUSSIONS
A. Generating circuit for Sum

The matrices used are shown in Figure 3. After applying all
the input combinations from Table III, the outputs for those
circuits after 1st iteration are obtained as shown in Table IV.

The fitness of each circuit is calculated by comparing the
outputs from Table IV with ‘Sum’ from Table III and is shown
in Table V.

As seen from Table V the maximum fitness is achieved
after 1st iteration is 5 which corresponds to matrix X2. So,
after 1st iteration X2 is taken as g_best matrix as shown in
Figure 5. As this is the 1st iteration the matrices X1 through

X5 are taken as their corresponding p_best matrices. After 46th
iteration, fitness value of 8 is obtained. After applying the
input combinations from Table III, the output from those five
circuits after 46th iteration are obtained as shown in Table VI.

The fitness of the circuits is calculated from the outputs of
the same circuits and is shown in Table VII. As seen from
Table VII the maximum fitness (=8) is achieved which
corresponds to matrix X4. So, after 46th iteration X4 is taken
as g_best matrix as given in Figure 6. The optimal circuit for
‘Sum’ corresponding to g_best matrix after 46th iteration is
shown in Figure 7.

TABLE IV. OUTPUT OF RANDOM CIRCUIT AFTER 1ST ITERATION

Inputs Outputs
A B C FX1 FX2 FX3 FX4 FX5
0 0 0 1 1 1 0 0
0 0 1 0 1 1 0 0
0 1 0 0 1 1 0 1
0 1 1 0 0 0 1 1
1 0 0 1 1 0 1 1
1 0 1 0 0 1 1 0
1 1 0 1 1 1 1 1
1 1 1 1 0 1 1 0

TABLE V. FITNESS AFTER 1ST ITERATION

 X1 X2 X3 X4 X5
Fitness 4 5 4 3 4

g_best = X2 =

0410
000
000
827
000
513
511

Fig 5. g_best matrix after 1st iteration.

TABLE VI. OUTPUT OF RANDOM CIRCUIT AFTER 46TH ITERATION

Inputs Outputs
A B C FX1 FX2 FX3 FX4 FX5
0 0 0 1 1 1 0 0
0 0 1 0 0 0 1 1
0 1 0 0 0 0 1 1
0 1 1 0 1 1 0 0
1 0 0 1 1 1 1 1
1 0 1 0 0 0 0 0
1 1 0 0 0 0 0 1
1 1 1 0 1 1 1 0

TABLE VII. FITNESS AFTER 46TH ITERATION

 X1 X2 X3 X4 X5
Fitness 4 4 4 8 6

 g_best = X4 =

833
000
415
313
101
531
421

 Fig 6. g_best matrix after 46th iteration.

2026

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT) - 2016

978-1-4673-9939-5/16/$31.00 ©2016 IEEE

B. Generate circuit for Carry

The same matrices as shown in Figure 3 have been used for
generating the Carry circuit. After applying the input
combinations from Table III, the outputs from those five
circuits after 1st iteration are obtained and are shown in Table
VIII. The fitness of each circuit is calculated by comparing the
output from Table VIII with ‘Carry’ from Table III and is
shown in Table IX. As seen from Table IX the maximum
fitness achieved after 1st iteration is 7 which corresponds to
matrix X4. So, after 1st iteration X4 is taken as g_best matrix
as shown in Figure 8.

TABLE VIII. OUTPUTS OF RANDOM CIRCUITS AFTER 1ST

ITERATION
Inputs Outputs

A B C FX1 FX2 FX3 FX4 FX5
0 0 0 1 1 1 0 0
0 0 1 0 1 1 0 0
0 1 0 0 1 1 0 1
0 1 1 0 0 0 1 1
1 0 0 1 1 0 1 1
1 0 1 0 0 1 1 0
1 1 0 1 1 1 1 1
1 1 1 1 0 1 1 0

TABLE IX. FITNESS AFTER 1ST ITERATION

 X1 X2 X3 X4 X5
Fitness 4 1 4 7 4

 g_best = X4 =

1137
000
918
000
531
321
511

As this is the 1st iteration the matrices X1 through X5 are

taken as their corresponding p_best matrices. After 105th
iteration fitness value of 8 is obtained. After applying the input
combinations from Table III, the outputs for those five circuits
after 105th iteration are obtained and are shown in Table X.
The fitnesses of the circuits are calculated from the outputs of
the same circuits and are shown in Table XI. As seen from
Table XI the maximum fitness (=8) is achieved which
corresponds to matrix X3. So, after 105th iteration X3 is taken
as g_best matrix as shown in Figure 9. The optimal circuit for
‘Carry’ corresponding to g_best matrix after 105th iteration is
shown in Figure 10.

TABLE X. OUTPUT OF RANDOM CIRCUIT AFTER 105TH ITERATION

Inputs Outputs
A B C FX1 FX2 FX3 FX4 FX5
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 1 0 1 1 0 0
1 0 0 0 1 0 0 0
1 0 1 1 1 1 1 1
1 1 0 0 1 1 0 0
1 1 1 1 1 1 1 1

TABLE XI. FITNESS AFTER 105TH ITERATION

 X1 X2 X3 X4 X5
Fitness 6 7 8 6 6

 g_best = X3 =

1127
000
913
000
531
320
511

Fig 10. Carry circuit after 105th iteration.

C. Generate circuit for Full Adder
 Combining the circuits obtained from Figure 7 and Figure
10, the optimized Full Adder circuit is realized and is shown
in Figure 11.

Fig 11. Optimized Full Adder circuit using PSO.

D. Comparison

The proposed design circuit has been compared with the
human design circuit using Karnaugh map and with the circuit
designed by using PSO [10].

Table XII justifies that the proposed PSO based Full Adder
circuit design takes lesser number of iterations as compared
with that of [10] and yields a lesser gate count as compared
with that of human design.

Fig 9. g_best matrix after 105th iteration.

Fig 7. Sum circuit after 46th iteration.

Fig 8. g_best matrix after to 1st iteration.

2027

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT) - 2016

978-1-4673-9939-5/16/$31.00 ©2016 IEEE

TABLE XII. COMPARISON OF DIFFERENT FULL ADDER CIRCUIT
 Human

Design
PSO by

[10]
PSO in this

paper

Sum
circuit

Gate count 2 2 2
Iterations - 101 46

Carry
circuit

Gate count 4 4 4
Iterations - 358 105

Full
Adder

Gate count 6 5 5
Iterations - 459 151

V. CONCLUSION

Comparing the proposed design circuit with the human design
circuit, there is a reduction of one gate in the proposed full
adder design. So, there will be less area and less power
consumption in the proposed design which is suitable for
designing portable low power circuits. On the other hand,
comparing with the circuit designed by Ushie [10], there is no
reduction in gate count. But, designed circuit shown in [10]
contains 3 XOR and 2 AND gates whereas, the proposed
design contains 2 XOR, 2 AND and 1 OR gates. In the
proposed design 1 XOR gate is replaced by 1 OR gate.
Though apparently there is no reduction in gate count but
there is reduction in the area as OR gate consumes less area
than that of XOR gate. Apart from that there is also a
reduction in the number of iterations require to achieve the
optimal design. The number of iterations in designing the
‘Sum’ circuit is reduced by 54.45% in the proposed design.
The number of iterations in designing the ‘Carry’ circuit is
reduced by 70.67% in the proposed design. There is an overall
reduction of 67.10% in the proposed design in terms of
number of iterations. So, comparing with the circuit designed
in [10] using PSO there is a reduction in area and also in the
number of iterations. Due to reduction in area, chip count can
be increased and due to reduction in iterations, computational
complexity is reduced.
 Finally, it has been found that PSO based technique is very
useful to design digital circuits. Using PSO, digital circuits can
be designed with lesser number of gates in comparison to
human design methods. However, parameters used in PSO are
not generalized. So, the parameter values in PSO have been
selected carefully to attain optimum solution with lesser
computational complexity.

REFERENCES
[1] M. Kamaugh, “A Map Method for Synthesis of Combinational Logic

Circuits,” Transactions of the AIEE, Communication and Electronics,
Vol. 721, pp. 593-599, 1953.

[2] W.V. Quine, “A way to Simplify Truth Functions,” American
Mathematical Monthly, Vol. 62:9, pp. 627-631, 1955.

[3] T. Sasao, editor, “Logic Synthesis and Optimization”, Kluwcr Academic
Press, 1993.

[4] C. Yonggang, Y. Fengjie, S. Jigui, “A New Particle Swam Optimization
Algorithm,” Journal of Jilin University, vol. 24(2), pp. 181-183, 2003.

[5] V.G. Gudise and G.K. Venayagamoorthy, “Evolving Digital Circuits
Using Particle Swarm,” Neural Networks, Proceedings IEEE Joint
Conference vol. 1, pp. 468-472, 2003.

[6] V.G. Gudise and G.K. Venayagamoorthy, “Comparison of Particle
Swarm Optimization and Back Propagation as Training Algorithms for
Neural Networks,” IEEE Swarm Intelligence Symposium, April 2003.

[7] J. Kennedy and R.C. Eberhart, “Particle Swarm Optimization,”
Proceedings, IEEE International Conference on Neural Networks, Vol.
4, pp. 1942-1948, 1995.

[8] R.C. Eberhart, J. Kennedy, ‘‘A New Optimizer Using Particle Swarm
Theory, Proceedings of 6th International Symposium on Micro Machine

and Human Science,’’ Nagoya, Japan, IEEE Service Center Piscataway
NJ, pp. 39-43, 1995.

[9] S.J. Louis, “Genetic Learning for Combinational Logic Design,” 2003.
[10] Ushie, J. Ogri, O.J.A. Etim, I. Prosper, “Optimizing Digital

Combinational Circuit Using Particle Swarm Optimization Technique,”
Latin American Journal of Physics Education, Vol. 6, No. 1, pp. 72-77,
March 2012.

[11] C.A.C. Coello, E.H. Luna and A. Hernandez, “Use of Particle Swarm
Optimization to Design Combinational Logic Circuits,” Embedded
Systems, Vol. 2606, pp. 398-409, Springer Link 2003.

[12] J.P. Yang, I. Shou, Dashu, Taiwan; C.K. Kung, F.T. Liu, Y.J. Chen,
“Logic Circuit Design by Neural Network and PSO Algorithm,”
Proceedings IEEE Conference, pp. 456-459, PCSPA 2010.

[13] Y. Shi, R.C. Eberhart, “Parameter Selection in Particle Swarm
Optimization,” Evolutionary Programming VII, vol. 1447, pp. 590 –
600, Springer Link 1998.

[14] R.C. Eberhart and Y. Shi, “Particle Swarm Optimization: Developments,
Applications and Resources,” in Proceedings. IEEE Conference.
Evolutionary Computing, vol. 1, pp. 81–86, May 2001.

[15] Y.D. Valle, G.K. Venayagamoorthy, S. Mohagheghi, J.C. Hernandez, R.
G. Harley, “Particle Swarm Optimization: Basic Concepts, Variants and
Applications in Power Systems,” IEEE transactions on evolutionary
computation, vol. 12, no. 2, pp. 171-195, April 2008.

[16] S. Masrom, S.Z.Z. Abidin, N. Omar, K. Nasir, “Time-Varying Mutation
in Particle Swarm Optimization,” Intelligent Information and Data- base
Systems, 5th Asian Conference, ACIIDS, Kuala Lumpur, Malaysia,
Proceeding, Part 1, pp. 31 – 40, March 2013.

2028

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

