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Abstract. We prove that the tight bound on the nondeterministic state
complexity of complementation on prefix-free and suffix-free languages
is 2n−1. To prove tightness, we use a ternary alphabet, and we show that
this bound cannot be met by any binary prefix-free language. On non-
returning languages, the upper bound is 2n−1 +1, and it is tight already
in the binary case. We also study the unary case in all three classes.

1 Introduction

The complement of a formal language L over an alphabet Σ is the language
Lc = Σ∗ \L, where Σ∗ is the set of all strings over an alphabet Σ. The comple-
mentation is an easy operation on regular languages represented by deterministic
finite automata (DFAs) since to get a DFA for the complement of a regular lan-
guage, it is enough to interchange the final and non-final states in a DFA for
this language.

On the other hand, complementation on regular languages represented by
nondeterministic finite automata (NFAs) is an expensive task. First, we have
to apply the subset construction to a given NFA, and only after that, we may
interchange the final and non-final states. This gives an upper bound 2n.

Sakoda and Sipser [17] gave an example of languages over a growing alpha-
bet size meeting this upper bound on the nondeterministic state complexity of
complementation. Birget claimed the result for a three-letter alphabet [3], but
later corrected this to a four-letter alphabet. Ellul [7] gave binary O(n)-state
witness languages. Holzer and Kutrib [12] proved the lower bound 2n−2 for a
binary n-state NFA language. Finally, a binary n-state NFA language meeting
the upper bound 2n was described by Jirásková in [15]. In the unary case, the

complexity of complementation is known to be in eΘ(
√
n lnn) [12, 14].

In this paper, we investigate the complementation operation on prefix-free,
suffix-free, and non-returning languages. A language is prefix-free if it does not
contain two distinct strings one of which is a prefix of the other. The suffix-free
languages are defined in a similar way. We call a language non-returning if a
minimal NFA for this language does not have any transitions going to the initial
state.
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Prefix-free languages are used in coding theory. In prefix codes, like variable-
length Huffman codes or country calling codes, there is no codeword that is a
proper prefix of any other codeword. With such a code, a receiver can identify
each codeword without any special marker between words.

The complexity of basic regular operations on prefix-free and suffix-free lan-
guages, both in the deterministic and nondeterministic cases, was studied by Han
at al. in [8–11]. For the nondeterministic state complexity of complementation,
they obtained an upper bound 2n−1 + 1 in both classes, and lower bounds 2n−1

and 2n−1 − 1 for prefix-free and suffix-free languages, respectively. The question
of a tight bound remained open. In this paper, we solve this open question, and
prove that in both classes, the tight bound is 2n−1. To prove tightness, we use
a ternary alphabet, and in the case of prefix-free languages, we show that this
bound cannot be met by any binary language.

Eom et al. in [6] investigated also the class of so called non-returning reg-
ular languages, the minimal DFA for which has no transitions going to the
initial state. It is known that every suffix-free language is non-returning, but
the converse does not hold. Here we study the complementation on so called
non-returning NFA languages, defined as languages represented by a minimal
non-returning NFA. We show that the upper bound on the complexity of com-
plementation in this class is 2n−1 + 1, and we prove that it is tight already in
the binary case.

We also study the unary case, and prove that the nondeterministic state com-
plexity of complementation is in Θ(

√
n) in the class of prefix-free or suffix-free

languages, and it is in 2Θ(
√
n logn) in the class of non-returning NFA languages.

To prove the minimality of nondeterministic finite automata, we use a fooling
set lower-bound technique [1, 3, 5, 13].

Definition 1. A set of pairs of strings {(x1, y1), (x2, y2), . . . , (xn, yn)} is called
a fooling set for a language L if for all i, j in {1, 2, . . . , n},
(F1) xiyi ∈ L, and
(F2) if i �= j, then xiyj /∈ L or xjyi /∈ L.

Lemma 1 ([3, 5, 13]). Let F be a fooling set for a language L. Then every
NFA (with multiple initial states) for the language L has at least |F| states. ��

2 Complement on Prefix-Free Languages

Let us start with complementation on prefix-free languages. The following two
observations are easy to prove.

Proposition 1 ([9]). Let n ≥ 2 and A = (Q,Σ, δ, s, F ) be a minimal n-state
DFA for a language L. Then L is prefix-free if and only if A has a dead state qd
and exactly one final state qf such that δ(qf , a) = qd for each a in Σ. ��
Proposition 2 ([10]). Let N = (Q,Σ, δ, s, F ) be a minimal NFA for a prefix-
free language. Then N has exactly one final state qf , and δ(qf , a) = ∅ for each
a in Σ. ��
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Han et al. in [10] obtained an upper bound 2n−1 +1 and a lower bound 2n−1

on the nondeterministic complexity of complementation on prefix-free languages.
Our first result shows that the upper bound can be decreased by one. Recall that
the nondeterministic state complexity of a regular language L, nsc(L), is defined
as the smallest number of states in any NFA recognizing the language L.

Lemma 2. Let n ≥ 3. Let L be a prefix-free regular language with nsc(L) = n.
Then nsc(Lc) ≤ 2n−1.

Proof. Let N be an n-state NFA for a prefix-free language L. Construct the
subset automaton of the NFA N and minimize it. Then, all the final states are
equivalent, and they go to the dead state on each input. Thus L is accepted by
a DFA A = (Q,Σ, δ, s, {qf}) with at most 2n−1 + 1 states, with a dead state
qd which goes to itself on each symbol, and one final state qf which goes to the
dead state on each symbol, thus δ(qd, a) = qd and δ(qf , a) = qd for each a in Σ.

To get a DFA for the language Lc, we interchange the final and non-final
states in the DFA A, thus Lc is accepted by the (2n−1 + 1)-state DFA Ac =
(Q,Σ, δ, s,Q\{qf}). We show that using nondeterminism, we can save one state,
that is, we describe a 2n−1-state NFA for the language Lc.

Construct a 2n−1-state NFA N c for Lc from the DFA Ac by omitting state qd,
and by replacing each transition (q, a, qd) by two transitions (q, a, qf ) and (q, a, s).
Formally, construct an NFA N c = (Q \ {qd}, Σ, δ′, s, Q \ {qf , qd}), where

δ′(q, a) =

{
{δ(q, a)}, if δ(q, a) �= qd,

{qf , s}, if δ(q, a) = qd.

Let us show that L(N c) = L(Ac).
Let w = a1a2 · · · ak be a string in L(Ac), and let s, q1, q2, . . . , qk be the com-

putation of the DFA Ac on the string w. If qk �= qd, then each qi is different
from qd since qd goes to itself on each symbol. It follows that s, q1, q2, . . . , qk is
also a computation of the NFA N c on the string w. Now assume that qk = qd.
Then there exists an � such that the states q�, q�+1, . . . , qk are equal to qd, and
the states s, q1, . . . , q�−1 are not equal to qd. If � = k, then δ(qk−1, ak) = qd,
so s ∈ δ′(qk−1, ak). It follows that s, q1, q2, . . . , qk−1, s is an accepting com-
putation of N c on w. If � < k, then we have q� = q�+1 = · · · = qk = qd,
and therefore the string w is accepted in N c through the accepting compu-
tation s, q1, . . . , q�−1, qf , qf , . . . , qf , s since we have δ′(q�−1, a�) = {qf , s}, and
δ′(qf , a) = {qf , s} for each a in Σ.

Now assume that a string w = a1a2 · · · ak is rejected by the DFA Ac. Let
s = q0, q1, q2, . . . , qk be the rejecting computation of the DFA Ac on the string
w. Since the only non-final state of the DFA Ac is qf , we must have qk = qf .
It follows that each state qi is different from qd, and therefore in the NFA N c,
we have δ′(qi−1, ai) = {δ(qi−1, ai)}. This means that s = q0, q1, q2, . . . , qk is a
unique computation of N c on w. Since this computation is rejecting, the string
w is rejected by the NFA N c. ��
To prove tightness, we use the same languages as in [10]. We provide a simple
alternative proof, in which we use a fooling-set lower bound technique.
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Fig. 1. An NFA of a binary regular language K with nsc(Kc) = 2n−1

Lemma 3. Let n ≥ 3. There exists a ternary prefix-free language such that
nsc(L) = n and nsc(Lc) ≥ 2n−1.

Proof. Let K be the language accepted by the NFA over {a, b} shown in Fig. 1
with n− 1 states. Set L = K · c. Then L is a prefix-free language recognized by
an n-state NFA in Fig. 2. As shown in [15, Theorem 5], there exists a fooling
set F = {(xS , yS) | S ⊆ {1, 2, . . . , n − 1}} of size 2n−1 for the language Kc.
Then the set of pairs of strings F ′ = {(xS , yS · c) | S ⊆ {1, 2, . . . , n − 1}} is a
fooling set of size 2n−1 for the language Lc. Hence, by Lemma 1, every NFA for
the language Lc requires at least 2n−1 states. ��
We summarize the results given in Lemma 2 and Lemma 3 in the following the-
orem which provides the tight bound on the nondeterministic state complexity
of complementation on prefix-free languages. This solves an open problem from
[10].

Theorem 1 (Complement on Prefix-Free Languages, |Σ| ≥ 3). Let n ≥ 3.
Let L be a prefix-free regular language over an alphabet Σ with nsc(L) = n.
Then nsc(Lc) ≤ 2n−1, and the bound is tight if |Σ| ≥ 3. ��
Notice that the bound 2n−1 is tight for an alphabet with at least three symbols.
In Section 6, we prove that this bound cannot be met by any binary prefix-free
language.

3 Complement on Suffix-Free Languages

In this section, we study the complementation operation on suffix-free languages.
We first recall some definitions and known facts.

Fig. 2. An NFA of a ternary prefix-free language L with nsc(Lc) = 2n−1
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An automaton A = (Q,Σ, δ, s, F ) is non-returning if the initial state s has no
in-transitions, that is, for each state q and each symbol a, we have s /∈ δ(q, a).

Proposition 3 ([8, 11]). Every minimal DFA (NFA) for a non-empty suffix-
free language is non-returning.

Proposition 4. Let A = (Q,Σ, δ, s, F ) be a minimal DFA for a non-empty
suffix-free regular language. Then A has a dead state d. Moreover, for each symbol
a in Σ, there is a state qa with qa �= d such that δ(qa, a) = d.

Proof. Let a ∈ Σ. Consider the string am withm ≥ |Q|. We must have δ(s, am) =
d, where d is a dead state, because otherwise, the DFA A would accept strings
amw and a�w with � < m, which would be a contradiction with suffix-freeness
of L(A). Since s �= d, there is a state qa with qa �= d such that δ(qa, a) = d. ��

Han and Salomaa in [11] have obtained an upper bound 2n−1 + 1 on the non-
deterministic state complexity of complementation on suffix-free languages. Our
next result shows that this upper bound can be again decreased by one.

Lemma 4. Let n ≥ 3. Let L be a suffix-free regular language with nsc(L) = n.
Then nsc(Lc) ≤ 2n−1.

Proof. Let N be a non-returning n-state NFA for a suffix-free language L. The
subset automaton A = (Q,Σ, δ, s, F ) of the NFA N has at most 1+2n−1 reach-
able states since the only reachable subset that contains the initial state of N
is the initial state of the subset automaton. The initial state of the subset au-
tomaton is non-final since L does not contain the empty string.

After interchanging the final and non-final states, we get a DFA Ac = (Q,Σ, δ,
s,Q \ F ) for Lc of 1 + 2n−1 states. The initial state of Ac is final and has no
in-transitions. The state d is final as well, and it accepts every string.

Construct a 2n−1-state NFA N c from the DFA Ac as follows. Let Qd be the
set of states of Ac different from d and such that they have a transition to the
state d, that is, Qd = {q ∈ Q \ {d} | there is an a in Σ such that δ(q, a) = d};
remind that by Proposition 4, for each symbol a, there is a state qa in Qd that
goes to d by a. Replace each transition (q, a, d) by transitions (q, a, p) for each
p in Qd, and moreover add the transition (q, a, s). Then, remove the state d.
Formally, let N c = (Q \ {d}, Σ, δ′, s, (Q \ {d}) \ F ), where

δ′(q, a) =

{
{δ(q, a)}, if δ(q, a) �= d,

{s} ∪Qd, if δ(q, a) = d.

In a similar way as in the case of prefix-free languages, it can be shown that
L(N c) = L(Ac). ��

As for a lower bound, Han and Salomaa in [11] claimed that there exists a ternary
suffix-free language meeting the bound 2n−1−1. In the next lemma, we increase
this lower bound by one.
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Fig. 3. An NFA of a ternary suffix-free language L with sc(Lc) = 2n−1

Lemma 5. Let n ≥ 3. There exists a ternary suffix-free language such that
nsc(L) = n and nsc(Lc) ≥ 2n−1.

Proof. Let K be the language accepted by the NFA over {a, b} shown in Fig. 1
with n−1 states. Set L = c ·K. Then L is a suffix-free language recognized by an
n-state NFA shown in Fig 3. As shown in [15, Theorem 5], there exists a fooling
set F = {(xS , yS) | S ⊆ {1, 2, . . . , n − 1}} of size 2n−1 for the language Kc.
Then the set of pairs of strings F ′ = {(c · xS , yS) | S ⊆ {1, 2, . . . , n − 1}} is a
fooling set of size 2n−1 for the language Lc. ��
We can summarize the results of this section in the following theorem which
provides the tight bound on the nondeterministic state complexity of comple-
mentation on suffix-free languages over an alphabet with at least three symbols.
Whether or not this bound can be met by binary languages remains open.

Theorem 2 (Complement on Suffix-Free Languages, |Σ| ≥ 3). Let n ≥ 3.
Let L be a suffix-free regular language over an alphabet Σ with nsc(L) = n.
Then nsc(Lc) ≤ 2n−1, and the bound is tight if |Σ| ≥ 3. ��

4 Complement on Non-Returning Languages

In this section, we consider languages that are recognized by non-returning NFAs.
We call a regular language non-returning if it is accepted by a minimal non-
returning NFA. Notice that every suffix-free language is non-returning, but the
converse does not hold.

The state complexity of basic regular operations on languages represented by
non-returning DFAs has been investigated by Eom et al in [6].

Here we study the nondeterministic state complexity of complementation on
non-returning NFA languages. Our next theorem shows that in this case, the
tight bound is 2n−1+1. Moreover, this bound is tight already in the binary case.

Theorem 3 (Complement on Non-Returning Languages, |Σ| ≥ 2). Let
n ≥ 3. Let L be a non-returning language over an alphabet Σ with nsc(L) = n.
Then nsc(Lc) ≤ 2n−1 + 1, and the bound is tight if |Σ| ≥ 2.

Proof. LetN = (Q,Σ, δ, s, F ) be an n-state non-returning NFA for a language L.
In the subset automaton of the NFA N , no subset containing the initial state s is
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reachable, except for the initial subset {s}. Therefore, the subset automaton has
at most 2n−1 + 1 reachable subsets. After interchanging the final and non-final
states in the subset automaton, we get a (2n−1+1)-state DFA for Lc. This gives
the upper bound.

To prove tightness, consider a non-returning language L = b ·K, where K is
the language accepted by the NFA shown in Fig. 1. The n-state NFA N for the
language L is shown in Fig. 4.

Let F = {(xS , yS) | S ⊆ {1, 2, . . . , n− 1}} be the fooling set for the language
Kc described in [15, Theorem 5]; notice that xS is a string, by which the initial
state 1 of the NFA in Fig. 1 goes to the set S. Let us show that the set

F ′ = {(ε, bn−2), (a, bn)} ∪ {(bxS , yS) | S ⊆ {1, 2, . . . , n− 1} and S �= ∅}

is a fooling set for the language Lc.
(F1) The strings bn−2 and abn are rejected by N , so they are in Lc. Each

string xSyS is in Kc, which means that the string bxSyS is in Lc.
(F2) If S and T are distinct and non-empty subset of {1, 2, . . . , n− 1}, then

at least one of the strings xSyT and xT yS is in K, so at least one of bxSyT and
bxT yS is in L, so it is not in Lc. Let S be a non-empty set of {1, 2, . . . , n− 1}.
The initial state 0 goes to the set S by b ·xS . Since S is non-empty, both strings
bn−2 and bn are accepted from S since they are accepted from each state in
{1, 2, . . . , n − 1}. It follows that the NFA N accepts the strings bxS · bn and
bxS · bn−2, so these strings are not in Lc. Finally, the string ε · bn is accepted by
the NFA N , so it is not in Lc.

Hence F ′ is a fooling set for the language Lc of size 2n−1 + 1. By Lemma 1,
every NFA for the language Lc requires at least 2n−1 + 1. ��

5 Unary Alphabet

In this section, we consider the complementation operation on unary prefix-free,
suffix-free, and non-returning languages. Our aim is to show that while in the
case of prefix-free and suffix-free unary languages, the nondeterministic state
complexity of complementation is in Θ(

√
n), in the case of non-retuning unary

languages, it is in 2Θ(
√
n logn). Let us start with the following observation.

Lemma 6. Let n ≥ 3 and L = {a}∗ \ {an}. Then √
n/3 ≤ nsc(L) ≤ 6

√
n.

Fig. 4. An NFA of a binary non-returning language L with sc(Lc) = 2n−1 + 1
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Fig. 5. An NFA A that does not accept an and accepts all the longer strings; m = �√n�,
k = n− (m2 −m− 1) ≤ 3

√
n

Proof. First consider a lower bound, and let us show that every NFA for L
requires at least

√
n/3 states. Assume for a contradiction that there is an NFA N

for L with less than
√
n/3 states. Then the tail in the Chrobak normal form

of N is of size less that 3 · (√n/3)2 [4, 19], thus less than n. Since an must be
rejected, each cycle in the Chrobak normal form must contain a rejecting state.
It follows that infinitely many strings are rejected, which is a contradiction.

Now let us prove the upper bound. Let m = �√n
, and consider relatively
prime numbersm andm+1. It is known that the maximal integer that cannot be
expressed as xm+ y(m+1) for non-negative integers x and y is (m− 1)m− 1 =
m2 − m − 1 [21]. Let k = n − (m2 − m − 1). Then 0 < k ≤ 3

√
n. Next, the

NFA A shown in Fig. 5 and consisting of a path of length k and two overlapping
cycles of lengths m and m+1 does not accept an, and accepts all strings ai with
i ≥ n+ 1.

It remains to accept the shorter strings. To this aim let p1, p2, . . . , p� be the
first � primes such that p1p2 · · · p� > n. Then � ≤ �logn�. Thus p1+p2+· · ·+p� =
Θ(�2 ln �) ≤ √

n [2]. Consider an NFA B consisting of an initial state s that is
connected to � cycles of lengths p1, p2, . . . , p�. Let the states in the j−th cycle be
0, 1, . . . , pj − 1, where s is connected to state 1. The state n mod pj is non-final,
and all the other states are final. Then this NFA does not accept an, but accepts
all strings ai with i ≤ n− 1 since we have (i mod p1, i mod p2, . . . , i mod p�) �=
(n mod p1, n mod p2, . . . , n mod p�). The NFA B for n = 24 is shown in Fig. 6.

Now we get the resulting NFA for the language L of at most 6
√
n states as

the union of NFAs A and B. ��

Using the above result, we get that the nondeterministic state complexity of
complementation on unary prefix-free or suffix-free languages is in Θ(

√
n) .

Fig. 6. The NFA B; n = 24
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Theorem 4 (Complement on Unary Prefix- and Suffix-Free
Languages). Let L be a unary prefix-free or suffix-free regular language with
nsc(L) = n. Then nsc(Lc) = Θ(

√
n).

Proof. The only prefix-free or suffix-free unary language with nsc(L) = n is the
singleton language {an−1}. Its complement is {a}∗ \ {an−1}, and the theorem
follows from Lemma 6. ��
Now, we turn our attention to unary non-returning NFA languages.

In the NFA-to-DFA conversion of unary languages, a crucial role is played by
the function F (n) = max{lcm(x1, . . . , xk) | x1 + · · ·+ xk = n}. It is known that

F (n) ∈ eΘ(
√
n lnn) and that O(F (n)) states suffice to simulate an n-state NFA by

a DFA [4]. This means that O(F (n)) states are sufficient for an NFA to accept
the complement of a unary NFA language. Moreover, in [12] a unary n-state
NFA language is described such that every NFA accepting its complement needs
at least F (n − 1) states. In [14], using a fooling set method, the lower bound
F (n−1)+1 is proved for a non-returning language. For the sake of completeness,
we recall this proof here.

Lemma 7. Let n ≥ 3. There exits a unary n-state non-returning NFA N such
that every NFA for the complement of L(N) requires at least F (n−1)+1 states.

Proof. Let i1, i2, . . . , ik be the integers, for which the maximum in the definition
of F (n− 1) is attained. Consider an n-state NFA N shown in Fig. 7. The NFA
N consists of the initial state s and k disjoint cycles of lengths i1, i2, . . . , ik. The
initial and rejecting state s is nondeterministically connected to the rejecting
states q1,0, q2,0, . . . , qk,0. All the remaining states are accepting.

Denote m = F (n− 1) = lcm(i1, i2, . . . , ik). Consider the set of m+ 1 pairs of
strings F = {(ε, ε)} ∪ {(ai, am+1−i) | 1 ≤ i ≤ m}, and let us show that F is a
fooling set for the language L(N)c.

(F1) The strings ε and aam are not accepted by N since the initial state s is
rejecting, and every computation on aam ends up in a rejecting state qj,0 because
each ij divides m. Hence εε and aiam+1−i with 1 ≤ i ≤ m are in L(N)c.

Fig. 7. A unary non-returning NFA N meeting the bound F (n−1)+1 for complement
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(F2) If 1 ≤ � < m = lcm(i1, i2, . . . , ik), then some ij does not divide �.
This means that the computation on aa� beginning with states s and qj,0 ends
up in an accepting state in {qj,1, qj,2, . . . , qj,ij−1}. It follows that the strings

εam, εam−1, . . . , εa2 and amε, as well as the strings aiam+1−j = aam−(j−i),
where 1 ≤ i < j ≤ m, are accepted by N , and therefore they are not in L(N)c.

Thus F is a fooling set for the language L(N)c, and the lemma follows. ��
Hence we get the following result.

Theorem 5 (Complement on Unary Non-Returning NFA Languages).
Let L be a unary non-returning NFA language with nsc(L) = n. Then nsc(Lc)

is in 2O(
√
n log n). The bound 2Ω(

√
n logn) can be met infinitely many times.

Proof. Every unary n-state NFA can be simulated by a [2n2 + n + F (n)]-state
DFA [4, 19]. After interchanging the final and non-final states, we get a DFA
for the complement with the same number of states. Since 2n2 + n + F (n) is

in 2O(
√
n logn), this gives the upper bound. For the lower bound, consider the

language L accepted by the n-state NFA N shown in Fig. 7.
First, we show that the language L is a non-returning NFA language. We

denoted m = F (n− 1), thus n < m. Let N ′ be an n′-state NFA for the language
L(N) with n′ ≤ n. Then N ′ must accept all strings ai with 2 ≤ i ≤ m since
all these strings are in L(N). Assume for a contradiction that N ′ is not non-
returning. Then, the initial state of N ′ is in a cycle of length � with 1 ≤ � ≤ n′ <
m. But then N ′ accepts the string am+1 = a� · am+1−� which is a contradiction
since am+1 is not in L(N).

Now, let k = min{� | F (�) = F (n − 1)}. Let us show that k ≤ nsc(L) ≤
k + 1. Recall that m = F (n − 1), thus m = F (k). Let F (k) = lcm(x1, . . . , xr).
Then L is accepted by a (k + 1)-state NFA consisting of an initial state that is
nondeterministically connected to r disjoint cycles of lengths x1, . . . , xr.

Next, assume for a contradiction that L is accepted by an n′-state NFA N ′

with n′ < k. Then in the Chrobak normal form of the NFA N ′, the number of
states in cycles is at most n′. It follows that L is accepted by a DFA A, the loop
of which is of length at most F (n′) < m. Then there is an integer t̂ such that

the computation of the DFA A on the string aat̂m ends in the loop. However, all
the strings aat̂m · ai with 1 ≤ i ≤ m − 1 must be accepted since they are in L.
It follows that all the states in the loop of the DFA A must be final. But then the
DFA A accepts a co-finite language, which is a contradiction since the language
L is not co-finite. Since F (n− 1) + 1 is in 2Ω(

√
n logn), the theorem follows. ��

6 Binary Alphabet

In this section, we study the complementation operation on binary prefix-free
and suffix-free languages. We prove that the nondeterministic state complexity
of complementation in this case is still exponential in 2Ω(

√
n logn). In the case

of prefix-free binary languages, we prove that the upper bound 2n−1 given by
Lemma 2 cannot be met. Whether or not this bound can be met by binary
suffix-free languages remains open. Let us start with lower bounds.
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Lemma 8. There exists a binary prefix-free (suffix-free) n-state NFA N such
that every NFA for the complement of L(N) requires at least F (n−2)+1 states.

Proof. Let L be the unary language accepted by an (n− 1)-state NFA given by
Lemma 7. Let F = {(xi, yi) | i = 1, 2, . . . , F (n− 2)+1} be the fooling set for Lc

given in the proof of Lemma 7.
In the prefix-free case, we take an n-state NFA for the binary prefix-free

language Lb. Then the set {(xi, yi b) | (xi, yi) ∈ F} is the fooling set for (Lb)c of
size F (n− 2) + 1, and the lemma follows.

In the suffix-free case, we take an n-state NFA for the language bL. This time,
the fooling set for (bL)c is {(b xi, yi) | (xi, yi) ∈ F}. ��

The next lemma provides an upper bound on the nondeterministic state com-
plexity of complementation on binary prefix-free languages.

Lemma 9. Let n ≥ 12. Let L be a binary prefix-free language with nsc(L) = n.
Then nsc(Lc) ≤ 2n−1 − 2n−3 + 1.

Proof. Let N be a minimal NFA for L. Let {1, 2, . . . , n} be the state set of N .
Let n be the final state of N . Without loss of generality, the state n is reached
from the state n− 1 on a in N .

If there is no transition (i, a, j) with i, j ∈ {1, 2, . . . , n−1}, then the automaton
on states {1, 2, . . . , n−1} is unary. It follows that in the subset automaton of N ,
at most O(F (n− 1)) < 2n−1 − 2n−3 subsets of {1, 2, . . . , n− 1} can be reached,
and the lemma follows in this case.

Now consider a transition (i, a, j) with i, j ∈ {1, 2, . . . , n − 1}. Let us show
that no subset of {1, 2, . . . , n−1} containing states i and n−1 may be reachable.
Assume for contradiction, that a set S∪{i, n−1} is reached from the initial state
of the subset automaton by a string u. Since N is minimal, the final state n is
reached from the state j by a non-empty string v. However, the set S∪{i, n−1}
goes to a final set S′ ∪ {j, n} by a, and then to a final set S′′ ∪ {n} by v.
It follows that the subset automaton accepts the strings ua and uav, which
is a contradiction with the prefix-freeness of the accepted language. Thus at
least 2n−3 subsets of {1, 2, . . . , n − 1} are unreachable. Therefore, the subset
automaton has at most 2n−1 − 2n−3 + 1 states. After exchanging the accepting
and the rejecting states we get a DFA of the same size for the complement of
L(N), and the lemma follows. ��

Now we summarize the results given by Lemma 9 and Lemma 8 in the following
theorem; recall that F (n) = max{lcm(x1, . . . , xk) | x1 + · · ·+ xk = n}, and that

F (n) is in 2Θ(
√
n logn).

Theorem 6 (Complement on Binary Prefix-Free Languages). Let L be
a binary prefix-free language with nsc(L) = n. Then nsc(Lc) ≤ 2n−1 − 2n−3 + 1.
The lower bound F (n− 2) + 1 can be met for infinitely many n. ��
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